簡易檢索 / 詳目顯示

研究生: Stepan Bosak
Stepan Bosak
論文名稱: 建置行動機器人與平台用於可見光通訊的室內導航
Mobile-Robot and Platform for VLC Indoor Navigation
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 鄭瑞光
Ray-Guang Cheng
阮聖彰
Shanq-Jang Ruan
黃天偉
Tian-Wei Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 81
中文關鍵詞: Visible Light Communication (VLC)Visible Light Positioning (VLP)NavigationIndoorTransmit/ Transmitting/ Transmitter (TX)Receive/ Receiving/ Receiver (RX)LocalizationHardware designLight-Emitting Diode (LED)SimulationsMeasurementsRobotFirmwareControl applicationWireless communicationsWireless Fidelity (Wi-Fi)
外文關鍵詞: Visible Light Communication (VLC), Visible Light Positioning (VLP), Navigation, Indoor, Transmit/ Transmitting/ Transmitter (TX), Receive/ Receiving/ Receiver (RX), Localization, Hardware design, Light-Emitting Diode (LED), Simulations, Measurements, Robot, Firmware, Control application, Wireless communications, Wireless Fidelity (Wi-Fi)
相關次數: 點閱:270下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The inherent advantages of Visible Light Communication (VLC), such as high throughput and security,
    has heightened the interest among researchers in studying it, especially in terms of Visible Light
    Positioning (VLP). The research has resulted in excellent positioning systems and algorithms with a
    centimetre localization accuracy. However, most researchers focus on presenting their newly designed
    algorithms instead of describing and analyzing the utilized workspace and testing environments.
    Moreover, most papers build use-case specific testbeds. The system implementation and hardware
    features affect the VLP system’s performance and cost, and determine its applicability in the
    commercial sphere. This thesis involves a VLC transmitter node, including electrical simulations and
    electrical and thermal measurements. The study shows the realization of a node and the testing
    environment.
    Meanwhile, categorizing the node and theoretically evaluating all recent and available positioning
    algorithms makes the node easily modifiable and adaptable.
    The second objective of the research is to select a proper VLC receiver and construct a robotic
    platform. This paper proposes a robotic device based on an ESP32 microcontroller. The robot
    integrates a light sensor, enabling VLP and navigation algorithms testing. The designed firmware
    collects the sensor’s data and controls the robot wirelessly.
    Lastly, all gathered data and the robot’s controls are accessible through a web browser application.
    The research in collaboration with Suda, M. processes the gathered image data. The web application
    utilizes the architecture designed by Suda, M.


    The inherent advantages of Visible Light Communication (VLC), such as high throughput and security,
    has heightened the interest among researchers in studying it, especially in terms of Visible Light
    Positioning (VLP). The research has resulted in excellent positioning systems and algorithms with a
    centimetre localization accuracy. However, most researchers focus on presenting their newly designed
    algorithms instead of describing and analyzing the utilized workspace and testing environments.
    Moreover, most papers build use-case specific testbeds. The system implementation and hardware
    features affect the VLP system’s performance and cost, and determine its applicability in the
    commercial sphere. This thesis involves a VLC transmitter node, including electrical simulations and
    electrical and thermal measurements. The study shows the realization of a node and the testing
    environment.
    Meanwhile, categorizing the node and theoretically evaluating all recent and available positioning
    algorithms makes the node easily modifiable and adaptable.
    The second objective of the research is to select a proper VLC receiver and construct a robotic
    platform. This paper proposes a robotic device based on an ESP32 microcontroller. The robot
    integrates a light sensor, enabling VLP and navigation algorithms testing. The designed firmware
    collects the sensor’s data and controls the robot wirelessly.
    Lastly, all gathered data and the robot’s controls are accessible through a web browser application.
    The research in collaboration with Suda, M. processes the gathered image data. The web application
    utilizes the architecture designed by Suda, M.

    1 Introduction 1 2 Hardware of the transmitting node 5 2.1 Microcontroller and LoRa communication . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Voltage-to-Current converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Variations of electrical components . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Stability of the Voltage-to-Current converter . . . . . . . . . . . . . . . . . . . 8 2.2.3 Closed-loop simulation of Voltage-to-Current converter . . . . . . . . . . . . . 10 2.2.4 Measurement of the Voltage-to-Current converter . . . . . . . . . . . . . . . . . 12 2.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 The Alternating Current to Direct Current adapter . . . . . . . . . . . . . . . . . 13 2.3.2 The Operational Amplifier (OPA)’s power supply . . . . . . . . . . . . . . . . . 13 2.3.3 Simulation of the Operational Amplifier’s power supply . . . . . . . . . . . . . 15 2.4 The thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Theory and the visible light receivers 21 3.1 Software positioning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.3 Vision analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.4 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.5 Hybrid algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Visible light receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Photodiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Complementary Metal-Oxide-Semiconductor architecture . . . . . . . . . . . . 28 3.2.3 Image Sensors and signal multiplexing . . . . . . . . . . . . . . . . . . . . . . 28 3.3 ESP32-CAM as the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Mobile Platform’s Hardware Realization 33 4.1 Robot’s components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Motor driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 H-Bridge function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Selected motor driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.4 Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.5 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.6 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Interconnection of the applied circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 ESP32-CAM and the FTDI programmer . . . . . . . . . . . . . . . . . . . . . . 38 4.2.2 The robot’s power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.3 Motor driver, button and the ESP32-CAM interconnections . . . . . . . . . . . 39 4.3 Mobile platform’s realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 The Robot’s Firmware 43 5.1 The main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 The control of the peripherals and the external hardware . . . . . . . . . . . . . . . . . 47 5.2.1 The robot’s movement algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2.2 LED operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 Control of the camera module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.1 Camera’s registers remote control . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.2 Image requests and acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 Flash memory’s operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Wi-Fi connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 Robot’s control application 55 6.1 Checking the robot’s status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 Controlling the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.1 Method flashLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.2 Method sendMotorData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.3 Method setCamera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 Fetching the robot’s images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 Conclusion and future work 59 A References 61 B Attachments 67

    [1] D. Dardari, P. Closas and P. M. Djurić, ‘Indoor tracking: Theory, methods, and technologies,’
    IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1263–1278, 2015. doi: 10.1109/
    TVT.2015.2403868.
    [2] R. Joseph and S. B. Sasi, ‘Indoor positioning using wifi fingerprint,’ in 2018 International
    Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 2018,
    pp. 1–3. doi: 10.1109/ICCSDET.2018.8821184.
    [3] S. Sophia, B. M. Shankar, K. Akshya, A. C. Arunachalam, V. T. Y. Avanthika and S. Deepak,
    ‘Bluetooth low energy based indoor positioning system using esp32,’ in 2021 Third International
    Conference on Inventive Research in Computing Applications (ICIRCA), 2021, pp. 1698–1702.
    doi: 10.1109/ICIRCA51532.2021.9544975.
    [4] A. Vena, I. Illanes, L. Alidieres, B. Sorli and F. Perea, ‘Rfid based indoor localization system to
    analyze visitor behavior in a museum,’ in 2021 IEEE International Conference on RFID
    Technology and Applications (RFID-TA), 2021, pp. 183–186. doi:
    10.1109/RFID-TA53372.2021.9617265.
    [5] A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash and T. Little, ‘Visible light communication
    module: An open source extension to the ns3 network simulator with real system validation two
    scenarios are used in the validation of the vlc module:’ IEEE Access, vol. PP, pp. 1–1, Oct. 2017.
    doi: 10.1109/ACCESS.2017.2759779.
    [6] S. Afifah, S. Angelina, P. Susamti, R. Priramadhi and D. Darlis, ‘Energy efficient transmitter for
    guided indoor navigation using visible light,’ IOP Conference Series: Materials Science and
    Engineering, vol. 434, p. 012 213, Dec. 2018. doi: 10.1088/1757-899X/434/1/012213.
    [7] Y. Zhuang, L. Hua, L. Qi et al., ‘A survey of positioning systems using visible led lights,’ IEEE
    Communications Surveys Tutorials, vol. 20, no. 3, pp. 1963–1988, 2018. doi: 10.1109/COMST.
    2018.2806558.
    [8] Š. Bosák, ‘Hw for indoor visible light positioning testbed,’ Bachelor’s Thesis, CTU FEE,
    Technická 2, May 2020. [Online]. Available: http://hdl.handle.net/10467/87622.
    [9] M. Suda, ‘Sw for indoor visible light positioning testbed,’ Bachelor’s Thesis, CTU FEE, Technická
    2, May 2020. [Online]. Available: http://hdl.handle.net/10467/87626.
    [10] S. Li, Z. Wang, L. Shi and X. Zhang, ‘Experimental indoor tracking testbed based on visible light
    communication,’ in 2019 26th IEEE International Conference on Electronics, Circuits and Systems
    (ICECS), 2019, pp. 129–130. doi: 10.1109/ICECS46596.2019.8965061.
    [11] Ai-Thinker, ESP32-CAM, 2017. [Online]. Available: http://www.ai- thinker.com/pro_
    view-24.html.
    [12] Device classes. [Online]. Available: https://www.thethingsnetwork.org/docs/lorawan/
    classes/.
    [13] STMicroelectronics, I-NUCLEO-LRWAN1, Original product from USI in partnership with
    STMicroelectronics., 2018. [Online]. Available:
    https://www.st.com/resource/en/data_brief/i-nucleo-lrwan1.pdf.
    [14] M. Suda, ‘Infrastructure of indoor vlp system,’ Master’s Thesis, NTUST DECE, Taipei, Taiwan
    (R.O.C.), Jun. 2022.
    [15] STMicroelectronics, B-L072Z-LRWAN1, The B-L072Z-LRWAN1 LoRa/Sigfox Discovery kit is a
    development tool to learn and develop solutions based on LoRa, Sigfox., 2019. [Online]. Available:
    https://www.st.com/en/evaluation-tools/b-l072z-lrwan1.html.
    [16] A. Devices, ADG819BRTZ-500RL7, Original product from Analog Devices., 2012. [Online].
    Available: https://cz.mouser.com/datasheet/2/609/ADG819-1503098.pdf.
    [17] T. Instruments, UA741CD, Original product from Texas Instruments., 2018. [Online]. Available:
    https://www.gme.cz/data/attachments/dsh.310-515.1.pdf.
    [18] VISHAY, IRF710, Original product from VISHAY., 2011. [Online]. Available: https://www.
    gme.cz/data/attachments/dsh.213-180.1.pdf.
    [19] AD817. [Online]. Available: https : / / www . analog . com / media / en / technical -
    documentation/data-sheets/AD817.pdf.
    [20] I. Rectifier, IRF540NPBF, Original product from International Rectifier., 2011. [Online].
    Available: https : / / www . infineon . com / dgdl / irf540npbf . pdf ? fileId =
    5546d462533600a4015355e39f0d19a1.
    [21] Parasitic oscillation and ringing of power mosfets, Jul. 2018. [Online]. Available: https://www.
    google . com / url ? sa = t & rct = j & q = &esrc = s & source = web & cd = &cad = rja & uact = 8 &
    ved=2ahUKEwjWiY6SmPL1AhUQjVYBHesnDUAQFnoECA4QAw&url=https%5C%3A%5C%2F%5C%
    2Ftoshiba . semicon - storage . com % 5C % 2Finfo % 5C % 2Fdocget . jsp % 5C % 3Fdid % 5C %
    3D59456&usg=AOvVaw1QFazvSVKwhRVd6-XnKqUp.
    [22] Ltspice: Stability of op amp circuits. [Online]. Available: https : / / www . analog . com / en /
    education/education-library/videos/5579254320001.html.
    [23] O. O. S. GmbH., LE UW U1A3 01, Original document from OSRAM Opto Semiconductors., 2018.
    [Online]. Available: https://dammedia.osram.info/media/resource/hires/osramdam-
    6715835/LE%5C%20UW%5C%20U1A3%5C%2001_EN.pdf.
    [24] Ti precision labs-op amps: Stability-phase margin, Oct. 2021. [Online]. Available: https : / /
    training.ti.com/ti-precision-labs-op-amps-stability-phase-margin?context=
    1139747-1139745-14685-1138805-13849.
    [25] C. Xie, W. Guan, Y. Wu, L. Fang and Y. Cai, ‘The led-id detection and recognition method based
    on visible light positioning using proximity method,’ IEEE Photonics Journal, vol. 10, no. 2, pp. 1–
    16, 2018. doi: 10.1109/JPHOT.2018.2809731.
    [26] Rohde and Schwarz, ROHDE AND SCHWARZ RTM3000 OSCILLOSCOPE, 2022. [Online].
    Available: https : / / www . rohde - schwarz . com / ae / products / test - and -
    measurement/oscilloscopes/rs-rtm3000-oscilloscope_63493-427459.html.
    [27] R. Semiconductor, Thermal calculation for linear regulator, 2017. [Online]. Available: https:
    //fscdn.rohm.com/en/products/databook/applinote/ic/power/linear_regulator/
    linearreg_heat_calculation_appli-e.pdf.
    [28] T. Instruments, LM340T-12/NOPB, Original product from Texas Instruments., 2020. [Online].
    Available: http : / / www . ti . com / general / docs / suppproductinfo . tsp ? distId = 26 &
    gotoUrl=http%5C%3A%5C%2F%5C%2Fwww.ti.com%5C%2Flit%5C%2Fgpn%5C%2Flm340.
    [29] M. WELL, RPS-30-12, 2021. [Online]. Available: https://www.meanwell- web.com/engb/
    ac-dc-single-output-medical-open-frame-power-rps--30--12.
    [30] X. Power, Iz series, 2021. [Online]. Available: https://www.xppower.com/product/IZSeries#.
    [31] M. P. Solutions, Dc-dc converters, 2020. [Online]. Available: https://www.murata.com/-
    /media/webrenewal/products/power/appnote/dcan-68.ashx?la=ja-jp&cvid=
    20201014090810000000.
    [32] BLM21AG102SN1#, 2022. [Online]. Available: https : / / www . murata . com / en - global /
    products/productdetail?partno=BLM21AG102SN1%5C%23.
    [33] B. Reeve, The capacitance multiplier, Feb. 2021. [Online]. Available: https://audioxpress.
    com/article/the-capacitance-multiplier.
    [34] D. Mercer, 16.3.1 transistor based capacitance multiplier, 2021. [Online]. Available: https :
    //wiki.analog.com/university/courses/electronics/text/chapter-16.
    [35] BCX54-16, 2017. [Online]. Available: https://www.nexperia.com/products/bipolartransistors/
    general- purpose- and- low- vcesat- bipolar- transistors/singlebipolar-
    transistors/single-bipolar-transistors-100-v/BCX54-16.html.
    [36] BCX51/52/53, Aug. 2021. [Online]. Available:
    https://www.diodes.com/assets/Datasheets/BCX51_52_53.pdf.
    [37] Littlefuse, TPSMB150A-VR-TPSMB-VR series, Dec. 2020. [Online]. Available: https://www.
    littelfuse.com/products/tvs- diodes/automotive- and- high- reliability- tvs/
    tpsmb_vr/tpsmb150a_vr.aspx.
    [38] T. F. LLC, FLIR E75, The product has been discontinued. Recommended replacement: FLIR E76.,
    2021. [Online]. Available: https://www.flir.com/support/products/e75/#Overview.
    [39] W. Thermal, Wakefield thermal 40x10mm 2 wire dc fan 12.2cfm —DC0401012V2B-2T0, 40mm x
    40mm x 10mm 2 Wire DC Fan 12.2CFM. [Online]. Available: https://wakefieldthermal.
    com/wakefield-thermal-40x10mm-2-wire-dc-fan-12-2cfm-dc0401012v2b-2t0/.
    [40] P. Chen, M. Pang, D. Che, Y. Yin, D. Hu and S. Gao, ‘A survey on visible light positioning from
    software algorithms to hardware,’ Wireless Communications and Mobile Computing, vol. 2021,
    pp. 1–20, Feb. 2021. doi: 10.1155/2021/9739577.
    [41] M. Nakajima and S. Haruyama, ‘New indoor navigation system for visually impaired people using
    visible light communication,’ EURASIP Journal on Wireless Communications and Networking,
    vol. 2013, Dec. 2013. doi: 10.1186/1687-1499-2013-37.
    [42] C. Sertthin, T. Fujii, O. Takyu, Y. Umeda and T. Ohtsuki, ‘On physical layer simulation model
    for 6-axis sensor assisted vlc based positioning system,’ in 2011 IEEE Global Telecommunications
    Conference - GLOBECOM 2011, 2011, pp. 1–5. doi: 10.1109/GLOCOM.2011.6134119.
    [43] Y. U. Lee and M. Kavehrad, ‘Two hybrid positioning system design techniques with lighting leds
    and ad-hoc wireless network,’ IEEE Transactions on Consumer Electronics, vol. 58, no. 4,
    pp. 1176–1184, 2012. doi: 10.1109/TCE.2012.6414983.
    [44] S.-Y. Jung, S. Hann, S. Park and C.-S. Park, ‘Optical wireless indoor positioning system using light
    emitting diode ceiling lights,’ Microwave and Optical Technology Letters, vol. 54, Jul. 2012. doi:
    10.1002/mop.26880.
    [45] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao and P. Dutta, ‘Luxapose: Indoor positioning with mobile
    phones and visible light,’ in Proceedings of the 20th Annual International Conference on Mobile
    Computing and Networking, ser. MobiCom ’14, Maui, Hawaii, USA: Association for Computing
    Machinery, 2014, pp. 447–458, isbn: 9781450327831. doi: 10 . 1145 / 2639108 . 2639109.
    [Online]. Available: https://doi.org/10.1145/2639108.2639109.
    [46] Z. Yang, Z. Wang, J. Zhang, C. Huang and Q. Zhang, ‘Wearables can afford: Light-weight indoor
    positioning with visible light,’ Proceedings of the 13th Annual International Conference on Mobile
    Systems, Applications, and Services, 2015.
    [47] S. Yamaguchi, V. V. Mai, T. C. Thang and A. T. Pham, ‘Design and performance evaluation of
    vlc indoor positioning system using optical orthogonal codes,’ in 2014 IEEE Fifth International
    Conference on Communications and Electronics (ICCE), 2014, pp. 54–59. doi: 10.1109/CCE.
    2014.6916679.
    [48] P. Hu, L. Li, C. Peng, G. Shen and F. Zhao, ‘Pharos: Enable physical analytics through visible light
    based indoor localization,’ Nov. 2013. doi: 10.1145/2535771.2535790.
    [49] L. Li, P. Hu, C. Peng, G. Shen and F. Zhao, ‘Epsilon: A visible light based positioning system,’ 11th
    USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pp. 331–343,
    Jan. 2014.
    [50] T. Q. Wang, Y. A. Sekercioglu, A. Neild and J. Armstrong, ‘Position accuracy of time-of-arrival
    based ranging using visible light with application in indoor localization systems,’ Journal of
    Lightwave Technology, vol. 31, no. 20, pp. 3302–3308, 2013. doi:
    10.1109/JLT.2013.2281592.
    [51] Y. H. Choi, I. H. Park, Y. H. Kim and J. Y. Kim, ‘Novel lbs technique based on visible light
    communications,’ in 2012 IEEE International Conference on Consumer Electronics (ICCE), 2012,
    pp. 576–577. doi: 10.1109/ICCE.2012.6161980.
    [52] T.-H. Do and M. Yoo, ‘Tdoa-based indoor positioning using visible light,’ Photonic Network
    Communications, vol. 27, pp. 80–88, Apr. 2014. doi: 10.1007/s11107-014-0428-4.
    [53] A. Arafa, S. Dalmiya, R. Klukas and J. Holzman, ‘Angle-of-arrival reception for optical wireless
    location technology,’ Optics Express, vol. 23, Mar. 2015. doi: 10.1364/OE.23.007755.
    [54] M. Yasir, S.-W. Ho and B. N. Vellambi, ‘Indoor positioning system using visible light and
    accelerometer,’ Journal of Lightwave Technology, vol. 32, no. 19, pp. 3306–3316, 2014. doi:
    10.1109/JLT.2014.2344772.
    [55] M. Yasir, S.-W. Ho and B. N. Vellambi, ‘Indoor position tracking using multiple optical receivers,’
    Journal of Lightwave Technology, vol. 34, no. 4, pp. 1166–1176, 2016. doi: 10.1109/JLT.2015.
    2507182.
    [56] G. B. Prince and T. D. Little, ‘A two phase hybrid rss/ aoa algorithm for indoor device
    localization using visible light,’ in 2012 IEEE Global Communications Conference
    (GLOBECOM), 2012, pp. 3347–3352. doi: 10.1109/GLOCOM.2012.6503631.
    [57] K. N. e. a. Hirokazu Nishikata Hideo Makino, ‘Basic research of indoor positioning method using
    visible light communication and dead reckoning,’ International Conference on Indoor Positioning
    and Indoor Navigation (IPIN), Sep. 2011.
    [58] N.-T. Nguyen, N.-H. Nguyen, V.-H. Nguyen, K. Sripimanwat and A. Suebsomran, ‘Improvement
    of the vlc localization method using the extended kalman filter,’ in TENCON 2014 - 2014 IEEE
    Region 10 Conference, 2014, pp. 1–6. doi: 10.1109/TENCON.2014.7022416.
    [59] E. O. Inc., Imaging electronics 101: Understanding camera sensors for machine vision
    applications. [Online]. Available: https : / / www . edmundoptics . com / knowledge -
    center / application - notes / imaging / understanding - camera - sensors - for -
    machine-vision-applications/.
    [60] W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu and Y. Chen, ‘Performance analysis and enhancement
    for visible light communication using cmos sensors,’ Optics Communications, vol. 410,
    pp. 531–551, 2018, issn: 0030-4018. doi:
    https : / / doi . org / 10 . 1016 / j . optcom . 2017 . 10 . 038. [Online]. Available:
    https://www.sciencedirect.com/science/article/pii/S0030401817309458.
    [61] W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu and Y. Chen, ‘High-speed robust dynamic positioning
    and tracking method based on visual visible light communication using optical flow detection and
    bayesian forecast,’ IEEE Photonics Journal, vol. 10, no. 3, pp. 1–22, 2018. doi: 10.1109/JPHOT.
    2018.2841979.
    [62] O. Technologies, Freertos real-time operating system for microcontrollers. [Online]. Available:
    https://www.freertos.org.
    [63] O. Technologies, Ov2460 color cmos uxga (2.0 megapixel) camerachip with omnipixel2
    technology, Feb. 2006. [Online]. Available:
    https://www.uctronics.com/download/cam_module/OV2640DS.pdf.
    [64] O. Technologies, Ov7670/ov7171 cmos vga (640x480) camerachip with omnipixel technology,
    May 2006. [Online]. Available: https : / / www . uctronics . com / download / Datasheet /
    ov7670_full_datasheet.pdf.
    [65] LaskaKit, Převodník 6pin usb ttl uart, cp2102, dtr pin. [Online]. Available:
    https://www.laskakit.cz/prevodnik-6pin-usb-ttl-uart--cp2102--dtr-pin/.
    [66] S. Studio, Image of ESP32-CAM. [Online]. Available:
    https : / / www . seeedstudio . com / media / catalog / product / cache /
    ef3164306500b1080e8560b2e8b5cc0f/b/a/bazaar1003541_esp32cam3.jpg.
    [67] D. Kim, J. K. Park and J. T. Kim, ‘Three-dimensional vlc positioning system model and method
    considering receiver tilt,’ IEEE Access, vol. 7, pp. 132 205–132 216, 2019. doi: 10.1109/ACCESS.
    2019.2940759.
    [68] Y. Li, Z. Ghassemlooy, X. Tang, B. Lin and Y. Zhang, ‘A vlc smartphone camera based indoor
    positioning system,’ IEEE Photonics Technology Letters, vol. 30, no. 13, pp. 1171–1174, 2018.
    doi: 10.1109/LPT.2018.2834930.
    [69] D. Workshop, Build an esp32cam robot car, Apr. 2021. [Online]. Available:
    https://dronebotworkshop.com/esp32cam-robot-car/.
    [70] D. Inc., H-bridges, 2014. [Online]. Available:
    https://learn.digilentinc.com/Documents/325.
    [71] B. J. Jim Brown, Brief h-bridge theory of operation, Sep. 2002. [Online]. Available:
    https : / / archive . ph / 20130112153214 / http : / / www . dprg . org / tutorials / 1998 -
    04a/#selection-267.0-267.34.
    [72] Toshiba, TB6612FNG, Jun. 2007. [Online]. Available:
    https://www.sparkfun.com/datasheets/Robotics/TB6612FNG.pdf.
    [73] MagiDeal, Magideal 1 piece dc geared motor, 3-6v tt gear motor, motor support/ bracket for
    arduino diy robot smart car robot tool chassis (multicolor). [Online]. Available:
    https://www.flipkart.com/magideal-1-piece-dc-geared-motor-3-6v-tt-gearmotor
    - support - bracket - arduino - diy - robot - smart - car - tool -
    chassis/p/itmf3h45ybkzbjzw.
    [74] T. Instruments, Lm2596 simple switcher power converter 150-khz 3-a step-down voltage regulator,
    May 2021. [Online]. Available: https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=
    1649206965309&ref_url=https%253A%252F%252Fwww.google.com%252F.
    [75] NooElec, 10 pcs lm2596 dc-dc buck converter step down module power supply output 1.23v-30v,
    Jun. 2012. [Online]. Available: https://www.amazon.com/LM2596- Converter- Module-
    Supply-1-23V-30V/dp/B008BHBEE0.
    [76] diymore Store, Diymore esp32 cam ov2640 2mp w-bt camera module+2.4g extension cable 20cm
    ipx adapter cable, Jun. 2019. [Online]. Available:
    https : / / www . amazon . com / dp / B07T1PG77D ? tag = makeradvisor -
    20&linkCode=ogi&th=1&psc=1.
    [77] TOTOLINK, Ac1200, wireless dual band router, model no. a800r. [Online]. Available: https:
    //www.totolink.net/home/menu/detail/menu_listtpl/products/id/166/ids/33.
    html.
    [78] T. Chip, 2wd smart robot car chassis kit. [Online]. Available: https://www.twinschip.com/
    2WD_Smart_Robot_Chassis.
    [79] Async web server for esp8266 and esp32, Mar. 2022. [Online]. Available: https://github.
    com/me-no-dev/ESPAsyncWebServer.
    [80] M. W. Docs, Http headers, Apr. 2022. [Online]. Available: https://developer.mozilla.
    org/en-US/docs/Web/HTTP/Headers.
    [81] M. W. Docs, Http request methods, Oct. 2021. [Online]. Available:
    https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.
    [82] Ardunio, Millis(), Mar. 2021. [Online]. Available: https://www.arduino.cc/reference/en/
    language/functions/time/millis/.
    [83] L. Espressif Systems (Shanghai) Co., Led control (ledc), 2022. [Online]. Available:
    https : / / docs . espressif . com / projects / esp - idf / en / latest / esp32 / api -
    reference/peripherals/ledc.html#ledc-api-supported-range-frequency-dutyresolution.
    [84] Esp32 camera driver, Licensed under the Apache License 2.0, Feb. 2022. [Online]. Available:
    https://github.com/espressif/esp32-camera.
    [85] D. Lane, Creating a multi-resolution favicon including transparency with the gimp, Aug. 2011.
    [Online]. Available: https : / / web . archive . org / web / 20101225130900 / http :
    //egressive.com/tutorial/creating- a- multi- resolution- favicon- includingtransparency-
    with-the-gimp.
    [86] B. Jan, Express.js tutorial, Oct. 2021. [Online]. Available:
    https://zetcode.com/javascript/expressjs/.
    [87] Freepik, Robot free icon. [Online]. Available: https : / / www . flaticon . com / free - icon /
    robot_3662817?related_id=3662817&origin=search.
    [88] B. Blanchon, Arduino json, 2022. [Online]. Available: https://arduinojson.org.
    [89] tzapu, AsyncWiFiManager, Licensed under the MIT License., Jan. 2022. [Online]. Available:
    https://github.com/alanswx/ESPAsyncWiFiManager.
    [90] A. Sharma, AsyncElegantOTA, Licensed under the MIT License., Apr. 2022. [Online]. Available:
    https://github.com/ayushsharma82/AsyncElegantOTA.
    [91] I. Grokhotkov, Generic class, Licensed under the GNU Lesser General Public License v2.1,
    2017. [Online]. Available: https : / / arduino -
    esp8266.readthedocs.io/en/latest/esp8266wifi/generic-class.html.
    [92] MDN, Json.stringify(), Licensed under a Creative Commons license, Mar. 2022. [Online].
    Available: https : / / developer . mozilla . org / en -
    US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify.

    QR CODE