簡易檢索 / 詳目顯示

研究生: 董孟洧
Meng-Wei Dong
論文名稱: 振動臺子結構即時複合實驗應用於結構自體調諧質量阻尼系統之可行性研究
A feasibility study on real-time hybrid simulation of a building mass damper system using a shake table
指導教授: 陳沛清
Pei-Ching Chen
口試委員: 盧煉元
Lyan-Ywan Lu
汪向榮
Shiang-Jung Wang
黃謝恭
Shieh-Kung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 結構自體調諧質量阻尼即時複合實驗穩定性分析振動臺實驗
外文關鍵詞: building mass damper, real-time hybrid simulation, shake table test, phase-lead compensator, force correction
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去前人的研究中,結構自體調諧質量阻尼(building mass damper, BMD)使用振動臺實驗進行參數研究,將BMD拆解為下部結構、控制層以及上部結構,以三自由度簡化模型進行參數研究。在過去振動台實驗中,上下部結構使用鋼結構試體,利用置換控制層之液態黏性阻尼器以及隔震支承墊,改變控制層參數進行研究。實驗過程中,試體一旦產生非線性行為,實驗即不具有可重複性,若要變更配置就須拆裝試體,花費龐大的實驗成本以及時間。因此本研究將即時複合實驗技術(real-time hybrid simulation, RTHS)應用於BMD之系統驗證實驗,將下部結構以數值模型建立,利用振動臺作為介面層連接控制層以及上部結構,重現過去BMD振動臺實驗之結果,確認可行後利用變更數值模型進行參數研究。
    為了研究BMD進入非線性行為後是否仍能保持良好的效果,本研究以非線性鋼構架即時複合實驗分析軟體RTFrame2D 建立下部結構之數值模型,配合補償器之分析與設計,以減少振動臺命令位移與實際位移之誤差。本研究首先使用與前人振動台實驗相同之試體配置進行實驗時,即時複合實驗結果皆為發散,僅在折減回饋力量時可穩定地完成實驗,經探討後發現是試體與數值模型之質量比過大而影響複合實驗系統之穩定性。因此,本研究使用三自由度之簡化BMD模型,變化實驗試體與數值模型之質量比進行穩定性之參數分析,確認在振動台子結構即時複合實驗中,若試體占全結構之質量比過大,將造成整個即時複合實驗系統之不穩定。基於此發現,本研究後續改以三自由度之簡化線性模型,進行BMD振動台子結構即時複合實驗之可行性研究。


    In the past, shake table testing has been conducted to investigate the seismic response of building mass damper (BMD) system by separating the system into a substructure, a control layer and a superstructure. A simplified 3 degrees-of-freedom (3DOF) model has been adopted for design and analysis of the BMD structural system. In the shake table test, the substructure and superstructure were emulated by steel specimens. The control layer was represented by sets of viscous dampers and rubber bearings; therefore, the structural parameters could be varied by replacing different viscous dampers and rubber bearings. Noted that the shake table test was not repeatable as long as the specimen behaved nonlinearly. Replacing the steel specimen could be costly in terms of time and budget. As a result, real-time hybrid simulation (RTHS) which is a novel experimental method for earthquake engineering studies has been adopted to investigate the seismic response of BMD structural systems when nonlinear behavior occurs in this study.
    In the RTHS, the substructure was numerically modelled using a nonlinear real-time structural analysis software “RTFrame2D”, while the control layer and superstructure were experimentally tested on a uni-axial shake table. In the first stage, the previous shake table testing results were treated as the benchmark to be compared with the RTHS results. The phase-lead compensator and force correction compensator were designed and implemented in order to reduce the tracking error between desired and achieved displacements. However, the entire RTHS remained stable merely when the transmitted base shear from the experimental substructure to the numerical substructure was scaled-down. Accordingly, stability analyses regarding the mass ratio of the experimental substructure to the entire BMD structural system have been performed by applying the 3DOF simplified BMD model, and the stability margin of RTHS for the 3DOF BMD model has been confirmed. Finally, a large number of RTHS experiments for the 3DOF BMD structural system have been conducted and the results have been compared, discussed, and summarized at the end of this study.

    摘要 ABSTRACT 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 研究動機 1.3 論文結構 第二章 文獻回顧 2.1 擬動態實驗 2.2 即時複合實驗 2.3 結構自體調諧質量阻尼 2.4 RTFrame2D 第三章 振動臺子結構 3.1 轉移函數 3.2 狀態空間 3.3 子結構運動方程式 第四章 八自由度BMD系統 4.1 實驗架設 4.2 軟硬體介紹 4.3 上部子結構系統識別 4.4 數值模擬 4.5 補償器設計 4.5.1 前饋補償器 4.5.2 力量修正補償器 4.6 閉迴路穩定性分析 第五章 BMD簡化模型 5.1 BMD簡化模型上部結構識別 5.2 BMD簡化模型數值模擬 5.3 實驗驗證 5.4 實驗分析 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    1. McCrum, D. P., and M. S. Williams. "An overview of seismic hybrid testing of engineering structures." Engineering Structures 118 (2016): 240-261.
    2. Hakuno, Motohiko, Masatoshi Shidawara, and Tsukasa Hara. "Dynamic destructive test of a cantilever beam, controlled by an analog-computer." Proceedings of the Japan society of civil engineers. Japan Society of Civil Engineers (1969): 1-9.
    3. Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H. "Nonlinear earthquake response analysis of structures by a computer-actuator on-line system." Bulletin of Earthquake Resistant Structure Research Center 8 (1975): 1-17.
    4. Magonette, Georges. "Development and application of large–scale continuous pseudo–dynamic testing techniques." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359.1786 (2001): 1771-1799.
    5. Nakashima, Masayoshi, T. Akazawa, and O. Sakaguchi. "Integration method capable of controlling experimental error growth in substructure pseudo dynamic test." AIJ J. of Struct. Constr. Engng 454 (1993): 61-71.
    6. Bonelli, A., Bursi, O. S., He, L., Magonette, G., & Pegon, P. "Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring." International Journal for Numerical Methods in Engineering 75.7 (2008): 800-825.
    7. Nakashima, Masayoshi, Hiroto Kato, and Eiji Takaoka. "Development of real‐time pseudo dynamic testing." Earthquake Engineering & Structural Dynamics 21.1 (1992): 79-92.
    8. Wang, J. T., Gui, Y., Zhu, F., Jin, F., & Zhou, M. X. "Real‐time hybrid simulation of multi‐story structures installed with tuned liquid damper." Structural Control and Health Monitoring 23.7 (2016): 1015-1031.
    9. Chae, Yunbyeong, James M. Ricles, and Richard Sause. "Large‐scale real‐time hybrid simulation of a three‐story steel frame building with magneto‐rheological dampers." Earthquake engineering & structural dynamics 43.13 (2014): 1915-1933.
    10. Schellenberg, Andreas H., Tracy C. Becker, and Stephen A. Mahin. "Hybrid shake table testing method: Theory, implementation and application to midlevel isolation." Structural Control and Health Monitoring 24.5 (2017): e1915.
    11. Zhang, R., Phillips, B. M., Taniguchi, S., Ikenaga, M., & Ikago, K. (2017). Shake table real‐time hybrid simulation techniques for the performance evaluation of buildings with inter‐story isolation. Structural Control and Health Monitoring, 24.10 (2017): e1971.
    12. 張國鎮、汪向榮、李柏翰、簡亭宜、陳穎萱,「結構自體調諧質量阻尼系統之耐震行為研究」,國家地震工程研究中心技術報告,NCREE-12-002,2012 年
    13. 陳穎萱. "結構自體調諧質量阻尼系統之振動臺試驗研究." 臺灣大學土木工程學研究所學位論文 (2013): 1-216.
    14. Castaneda-Aguilar, Nestor Eduardo, Xiuyu Gao, and Shirley Dyke. "Development and Validation of a Computational Tool for Real-time Hybrid of Steel Frame Structures." (2012).
    15. Wang, S. J., Lee, B. H., Chuang, W. C., & Chang, K. C. "Optimum dynamic characteristic control approach for building mass damper design." Earthquake Engineering & Structural Dynamics 47.4 (2018): 872-888.
    16. Phillips, Brian M., and Billie F. Spencer Jr. "Model-based feedforward-feedback actuator control for real-time hybrid simulation." Journal of Structural Engineering 139.7 (2013): 1205-1214.
    17. Chen, Pei‐Ching, and Keh‐Chyuan Tsai. "Dual compensation strategy for real‐time hybrid testing." Earthquake Engineering & Structural Dynamics 42.1 (2013): 1-23.

    QR CODE