簡易檢索 / 詳目顯示

研究生: 許原綦
Yuan-Qi Hsu
論文名稱: 二輪電動載具之永磁式同步電動機驅動器設計
Design of Permanent-magnet Synchronous Motor Drives for Two-wheel Electric Vehicles
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
林法正
Faa-Jeng Lin
郭明哲
Ming-Tse Kuo
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 永磁式同步電機移動機器人軌跡控制物聯網
外文關鍵詞: permanent-magnet synchronous motors(PMSMs), mobile robot, trajectory control, internet of things
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計二輪電動載具之三相永磁式同步電動機驅動器的設計,文中共分成電動機驅動系統、二輪電動載具的控制及物聯網通信三個部分。電動機驅動系統之電力電路使用三相變流器驅動三相永磁式同步電動機,藉六步電流方波控制,減少切換損失並降低驅動器成本;採用低成本數位霍爾效應元件回授轉子角位置作為電動機換相依據,區間之脈波寬度轉速估測器,可提高轉速回授的動態響應,並使低轉速回授範圍更寬廣;藉由三相變流器下臂低電阻壓降的回授,估測三相相電流作電流閉迴路控制,提高轉矩響應並降低轉矩漣波。二輪電動載具的控制,則採用二輪驅動的差動轉速變換方向,並作直線、旋轉和圓弧運動的行走軌跡控制。物聯網通信介面,則使用無線通信模組(ESP8266)作為數位信號處理器,以訊息佇列遙測傳輸之無線通信協定接收使用者命令,並將二輪資訊記錄在伺服器中。
    本文之驅動系統採用32位元數位信號處理器TMS320F28069作為控制核心,其控制策略皆以軟體實現,可提高可靠度;使用一個數位信號處理器控制二組三相變流器,並彼此協調控制,可減少電路元件。在轉速與轉矩分別為300 rpm及6.74 N-m下,電流開迴路控制加入電流閉迴路控制之電磁轉矩漣波由14.5%減為11.6%,系統效率由70.9%升至73.9%。另外,由位置閉迴路控制系統之實測知,具速度前饋補償的位置調節器,在位置命令為10πrad及轉速前饋增益為0.6時,追蹤誤差由0.0600 rad減少為0.0154 rad,追蹤誤差比例為電流開迴路的25.6%。由伺服器所記錄的資料推算路徑控制精準度,在直線運動位移命令為2 m時之直線運動位移誤差為0.0527 m;在旋轉運動旋轉角度命令為1.5708 rad (90°)時之旋轉運動的角度誤差為0.1380 rad (7°)。實測結果驗證本文系統具可行性。


    The thesis presents the design of permanent-magnet synchronous motor drives for two-wheel electric vehicles. It includes motor drive system, two-wheel electric vehicle control, and internet of things (IoT) communication. A three-phase inverter with its six-step control is designed in motor drive system to reduce switching loss and cost. Low-cost digital hall-effect rotor position sensors are used to provide commutation signals for the motor. In addition, speed feedback estimated with pulse-period measurement has yielded better dynamic response and larger feedback range in low-speed region. Three phase currents, which are obtained by measuring voltages between three current-shunt resistors, are fed back for current closed-loop control to give better torque response and lower torque ripple. On the other hand, the speed difference between two wheels is controlled to change direction of vehicle and realize trajectory control, including linear, rotational as well as arc motions. Finally, IoT communication uses ESP8266 module as the interface between digital signal processor and IoT, and applies message queuing telemetry transport protocol to receive motion command and record two-wheel data in the server.
    The 32-bit digital signal processor, TMS320F28069, is adopted as the control core. The control strategy is completed by software program for reliability enhancement. Two inverters are both controlled and coordinated by one digital signal processor for element reduction. The experimental results of current closed-loop control show that when the speed and the load are at 300 rpm and 6.74 N-m, respectively, the corresponding torque ripple is reduced from 14.5% to 11.6% with system efficiency increases from 70.9% to 73.9%. Whereas, the experimental results of position closed-loop control system indicate that when the speed feed-forward gain is 0.6, the tracking error is reduced from 0.0600 rad to 0.0154 rad. The trajectory-control results, which are derived from recorded data in the server, indicate that the displacement errors are 0.0527 m in 2-m linear motion and 0.1380 rad in 1.5708-rad rotational motion. In conclusion, the feasibility of the proposed control strategy has been verified by the experimental results.

    摘要 I Abstract II 誌謝 IV 目錄 V 符號索引 VII 圖表索引 XIV 第一章 緒論 1 1-1 研究動機及目的 1 1-2 文獻探討 2 1-3 系統架構與特色 3 1-4 本文大綱 7 第二章 三相永磁同步電動機模式及參數量測 8 2-1 前言 8 2-2 三相永磁式同步電動機的結構 8 2-3 三相永磁同步電動機之數學模式 9 2-4 三相永磁式同步電機的參數量測 11 2-4-1 定子繞組每相電阻及電感的量測 12 2-4-2 三相永磁式同步電動機的感應電勢量測、轉子磁通鏈計算 14 2-4-3 霍爾效應偵測元件信號的校正 16 2-5 結語 18 第三章 三相永磁式同步電動機之控制策略 19 3-1 前言 19 3-2 六步電流方波控制 19 3-3 電流、轉速及位置閉迴路控制策略 22 3-3-1 電流閉迴路控制 22 3-3-2 轉速及轉子角位置控制 28 3-4 模擬結果 32 3-4-1 三相永磁式同步電動機控制系統的模擬條件 32 3-4-2 三相永磁式同步電動機轉速及電流閉迴路控制的模擬結果 32 3-5 實測結果 35 3-5-1 三相永磁式同步電動機電流開迴路控制之實測結果 35 3-5-2 三相永磁式同步電動機轉速及電流閉迴路控制實測結果 37 3-6 結語 41 第四章 二輪載具的控制策略 42 4-1 前言 42 4-2 系統架構 42 4-3 自走車運動控制策略 43 4-3-1 雙輪自走車運動模型 43 4-3-2 雙輪自走車運動控制 49 4-4 結語 54 第五章 實體製作及實測 55 5-1 前言 55 5-2 硬體電路的規劃 55 5-3 物聯網的規劃 64 5-4 系統軟體規劃 66 5-3-1 主程式流程規劃 66 5-3-2 電動機控制流程規劃 68 5-3-3 路徑控制程式規劃 71 5-5 實測結果 73 5-4-1 具轉速前饋補償之位置控制實測結果 73 5-4-2 雙輪自走車之控制策略實測結果 74 5-6 結語 80 第六章 結論與建議 81 6-1 結論 81 6-2 建議 82 參考文獻 83 附錄A 自走車的機構規畫 87

    [1] Z. Q. Zhu and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors, Part II: Armaturereaction field," IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 136–142, 1993.
    [2] Z. Q. Zhu, and D. Howe, "Instantaneous magnetic field distribution in bushless permanent magnet DC motors, Part ΙV: Magnetic field on load, " IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 152–158, 1993.
    [3] R. Carlson, M. Lajoie-Mazenc and J. C. D. S. Fagundes, "Analysis of torque ripple due to phase commutation in brushless DC machines, " IEEE Transactions on Industry Applications Society Annual Meeting, vol. 28, no. 3, pp. 632-638, 1992.
    [4] Y. K. Lin and Y. S. Lai, "Pulse-width modulation technique for BLDCM drives to reduce commutation torque ripple without calculation of commutation time," IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4398-4404, 2010.
    [5] D. K. Kim, K. W. Lee and B. I. Kwon, "Commutation torque ripple reduction in a position sensorless brushless DC motor drive," IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1762-1768, 2006.
    [6] C. T. Pan and E. Fang, "A phase-locked-loop-assisted internal model adjustable-speed controller for BLDC motors," IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3415-3425, 2008.
    [7] J. Fang, H. Li, and B. Han. "Torque ripple reduction in BLDC torque motor with nonideal back EMF, IEEE Transactions on Industrial Electronics, vol. 27, no. 11,pp. 4630-4637, 2012
    [8] R. Zwahlen and T. Chang, "Feedforward speed control of brushless DC motors with input shaping," Industrial Electronics Society, 2007.33rd Annual Conference of the IEEE, 2007, pp. 1169–1174.
    [9] 劉志豪,"應用模糊控制於線型永磁式同步伺服馬達速度及定位控制器參數之調適",國立台灣科技大學電機研究所碩士論文,民國八十九年。
    [10] 劉昌煥,交流電機控制,東華書局,民國九十年。 
    [11] 劉佳恩,"低電流諧波之三相永磁式同步電動機位置控制系統研製",國立台灣科技大學電機工程所碩士論文,2016。
    [12] 陳金聖;陳立業;葉宗祺;李峰吉;陳文泉,"伺服迴路前饋補償控制及調適",國立臺北科技大學機電學院論文,民國一零二年。
    [13] C. C. Tsai, F. C. Tai and S.-M. Hsieh, "Unified motion controller design and FPGA-based implementation for nonholonomic mobile robots," SICE Annual Conference, pp2383-2389, 2010.
    [14] T. Das and I. N. Kar, "Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots," IEEE Transactions on Control Systems Technology , pp501-510, 2006.
    [15] K. H. Tseng and T. Y. Tai, "FPGA-based servo control IC for X-Y table," IEEE International Conference on Industrial Technology, pp2913-2918, 2006.
    [16] 施慶隆;李文猶,機電整合控制:多軸運動設計與應用,全華圖書,2015。
    [17] G. Klancar and I. Skrjanc, "Tracking-error model-based predictive control for mobile robots in real time," Robotics and Autonomous Systems, pp460-469,2007.
    [18] M. M. Fateh and A. Arab, "Robust control of a wheeled mobile robot by voltage control strategy," Journal of Nonlinear Dynamics and Chaos in Engineering Systems, pp335-348, 2015.
    [19] 譚民,先進機器人控制,高等教育出版社,2012。
    [20] K. R. Simba, N. Uchiyama and S. Sano, "Real-time trajectory generation for mobile robots in a corridor-like space using Bézier curves," IEEE/SICE International Symposium on System Integration, pp37-41, 2013.
    [21] Y. Kanayama,A. Nilipour and C. A. Lelm, "A locomotion control method for autonomous vehicles", IEEE International Conference on Robotics and Automation, pp. 1315-1317, 1988.
    [22] H. Xu and S. X. Yangt, "Tracking control of a mobile robot with kinematic and dynamic constraints," IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 125-130, 2001.
    [23] X. Kewei, Z. Yan and W. Wei, "Path tracking and trajectory planning for nonholonomic wheeled mobile robots," Chinese Control Conference, pp415-420, 2008.
    [24] R. Solea, A. Filipescu and Urbano Nunes, "Sliding-mode control for trajectory-tracking of a wheeled mobile robot in presence of uncertainties," Asian Control Conference, pp1701-1706, 2009.
    [25] J. Kunthong, T. Sapaklom, M. Konghirun, C. Prapanavarat, P. N. N. Ayudhya, E. Mujjalinvimut and S. Boonjeed, "IoT-based traction motor drive condition monitoring in electric vehicles: Part 1" IEEE International Conference on Power Electronics and Drive Systems, pp. 415-420, 2008.
    [26] L. Hou and N. W. Bergmann, "Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis", IEEE Transaction on Instrumentation and Measurement, vol. 61, no. 10, 2012.
    [27] S. Korkua, H. Jain, W. Lee and C. Kwan, "Wireless Health Monitoring System for Vibration Detection of Induction Motors", IEEE Industrial and Commercial Power Systems Technical Conference(I&CPS), 2010.
    [28] V. Gazis, M. Gortz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wies-maier, F. Zeiger and E. Vasilomanolakis, "A survey of technologies for the internet of things", 2015 IEEE International Wireless Communications and Mobile Computing Conference, pp. 1090-1095, 2015.
    [29] Marco Schwart,曾吉弘(譯),實戰物聯網開發:使用ESP8266,碁峰資訊股份有限公司,2017。
    [30] 趙英傑,超圖解物聯網IoT實作入門:使用JavaScript/Node.JS/Arduino/Raspberry Pi/ESP8266/Espruino,旗標出版股份有限公司,2016。
    [31] 施翰誠,"具寬廣速度範圍之三相永磁式同步電動機驅動器研製",國立台灣科技大學電機研究所碩士論文,民國一零四年。
    [32] 周芮葳,"基於環境辨認技術之自走車路徑追隨控制",國立臺北科技大學自動化科技研究所碩士論文,民國一零三年。
    [33] M. Miyamasu and K. Akatsu, "Efficiency comparison between brushless DC motor and brushless AC motor considering driving method and machine design," Annual Conference on IEEE Industrial Electronics Society, pp. 1830–1835, 2011.
    [34] J. P. Johnson, M. Ehsani and Y. Guzelqunler, "Review of Sensorless Methods for Brushless DC," Industry Applications Conference, 1999, IEEE, pp. 143-150 vol.1
    [35] B. Hu and S. Sathiakumar, "A novel sensorless method of brushless DC motor based on 180-degree commutation", The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol. 1, pp. 467-472, 2010.
    [36] 張勝閔,"應用數位羅盤及里程計之移動機器人連續軌跡控制",國立台灣科技大學電機研究所碩士論文,民國一零五年。
    [37] Y. Tian, N. Sidek, and N. Sarkar, "Modeling and control of a nonholonomic wheeled mobile robot with wheel slip dynamics", in IEEE Symposium on Computational Intelligence in Control and Automation, pp. 7-14, 2009.

    QR CODE