簡易檢索 / 詳目顯示

研究生: 徐唯毓
Wei-Yu Hsu
論文名稱: 基於三維卷積神經網路於心房顫動病人的斷層掃描影像之中風預測演算法
Stroke Prediction Algorithm Based on 3D Convolutional Neural Network for CT Scans in Patients with Atrial Fibrillation
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 呂政修
Jenq-Shiou Leu
蔡佳醍
Chia-Ti Tsai
陳維美
Wei-Mei Chen
力博宏
Po-Hung Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 27
中文關鍵詞: 心房顫動栓塞性中風人工智慧深度學習3D卷積神經網絡心臟CT
外文關鍵詞: Atrial fibrillation, Embolic stroke, Artificial intelligence, Deep learning, 3D convolutional neural network, Cardiac CT
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract in Chinese iii Abstract in English iv Acknowledgements v Contents vi List of Figures viii List of Tables ix List of Algorithms x 1 Introduction 1 2 RelatedWork 3 2.1 Atrial Fibrillation and Stroke 3 2.2 Medical Image Classification Based on DeepLearning Approach 3 2.3 3D Convolutional Neural Network 4 3 Proposed Method 7 3.1 Preprocessing 7 3.1.1 Object Detection 7 3.1.2 Uniformization 9 3.2 Training 12 3.2.1 Three-Dimensional(3D) CNN Model 12 4 Experiments 14 4.1 Dataset Description 14 4.2 Implementation Details 16 4.3 Evaluation 17 4.3.1 Comparison 17 4.3.2 Metrics 17 4.3.3 Results 19 4.3.4 Visualization 21 5 Conclusions 24 References 26

    [1] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medical image classification for disease diagnosis,” Journal of Big data, vol. 6, no. 1, pp. 1–18, 2019.

    [2] D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (resnet) variants for detection of colorectal cancer,” Procedia Computer Science, vol. 179, pp. 423–431, 2021.

    [3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

    [4] E.-L. Chen, P.-C. Chung, C.-L. Chen, H.-M. Tsai, and C.-I. Chang, “An automatic diagnostic system for ct liver image classification,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 6, pp. 783–794, 1998.

    [5] X. W. Gao, R. Hui, and Z. Tian, “Classification of ct brain images based on deep learning networks,” Computer methods and programs in biomedicine, vol. 138, pp. 49–56, 2017.

    [6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

    [7] H. Mzoughi, I. Njeh, A. Wali, M. B. Slima, A. BenHamida, C. Mhiri, and K. B. Mahfoudhe, “Deep multi-scale 3d convolutional neural network (cnn) for mri gliomas brain tumor classification,” Journal of Digital Imaging, vol. 33, pp. 903–915, 2020.

    [8] Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyperspectral imagery with 3d convolutional neural network,” Remote Sensing, vol. 9, no. 1, p. 67, 2017.

    [9] X. Li, Y. Zhou, P. Du, G. Lang, M. Xu, and W. Wu, “A deep learning system that generates quantitative ct reports for diagnosing pulmonary tuberculosis,” Applied Intelligence, vol. 51, pp. 4082–4093, 2021.

    [10] N. Ganatra, “A comprehensive study of applying object detection methods for medical image analysis,” in 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 821–826, 2021.

    [11] R. A. Welikala, P. Remagnino, J. H. Lim, C. S. Chan, S. Rajendran, T. G. Kallarakkal, R. B. Zain, R. D. Jayasinghe, J. Rimal, A. R. Kerr, R. Amtha, K. Patil, W. M. Tilakaratne, J. Gibson, S. C. Cheong, and S. A. Barman, “Automated detection and classification of oral lesions using deep learning for early
    detection of oral cancer,” IEEE Access, vol. 8, pp. 132677–132693, 2020.

    [12] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, K. Michael, TaoXie, J. Fang, imyhxy, Lorna, Z. Yifu, C. Wong, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, 26 V. Sonck, tkianai, yxNONG, P. Skalski, A. Hogan, D. Nair, M. Strobel, and M. Jain, “ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation,” Nov. 2022.

    [13] P. Bourke, “Interpolation methods,” Miscellaneous: projection, modelling, rendering, vol. 1, no. 10, 1999.

    [14] A. Gamal, M. Elattar, and S. Selim, “Automatic early diagnosis of alzheimer’s disease using 3d deep ensemble approach,” IEEE Access, vol. 10, pp. 115974–115987, 2022.

    [15] P. M. Gordaliza, J. J. Vaquero, S. Sharpe, F. Gleeson, and A. Munoz-Barrutia, “A multi-task self-normalizing 3d-cnn to infer tuberculosis radiological manifestations,” arXiv preprint arXiv:1907.12331, 2019.
    [16] J. Yang, X. Huang, Y. He, J. Xu, C. Yang, G. Xu, and B. Ni, “Reinventing 2d convolutions for 3d images,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 8, pp. 3009–3018, 2021.

    [17] S. Kazlouski, “Imageclef 2019: Ct image analysis for tb severity scoring and ct report generation using autoencoded image features.,” CLEF (Working Notes), vol. 2, 2019.

    [18] S. Parveen, “Faster image zooming using cubic spline interpolation method,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 3, pp. 22–26, 2015.

    [19] W. Alakwaa, M. Nassef, and A. Badr, “Lung cancer detection and classification with 3d convolutional neural network (3d-cnn),” International Journal of Advanced Computer Science and Applications, vol. 8, no. 8, 2017.

    [20] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation,” Medical image analysis, vol. 36, pp. 61–78, 2017.

    [21] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 922–928, IEEE, 2015.

    [22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning, pp. 448–456, pmlr, 2015.

    [23] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

    [24] D. Mason, “Su-e-t-33: pydicom: an open source dicom library,” Medical Physics, vol. 38, no. 6Part10, pp. 3493–3493, 2011.

    [25] K. Somasundaram and P. Kalavathi, “Medical image contrast enhancement based on gamma correction,” Int J Knowl Manag e-learning, vol. 3, no. 1, pp. 15–18, 2011.

    [26] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 2026/02/01 (校外網路)
    全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE