簡易檢索 / 詳目顯示

研究生: 呂昱德
Yu-Te Lu
論文名稱: 適用於太陽能發電系統之兩段式最大功率追蹤技術
A two stage power point tracking technique for photovoltaic generation systems
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 太陽能發電系統最大功率追蹤擾動觀察法狀態估測
外文關鍵詞: Photovoltaic generation system(PGS), Maximum Power Point Tracking(MPPT), Perturb and observe method(P&O), State estimation
相關次數: 點閱:443下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能發電系統由於無燃料消耗、維護成本低及環境永續的優勢使得在市場受到歡迎。而當太陽能發電系統安裝於照度極具變化的地區,為了可以最大限度使用太陽能量,最大功率追蹤對太陽能發電系統來說是最重要的部分之一。如果太陽能發電系統無法立即控制於最大功率點會造成一定的功率損失,因此開發一具有快速追蹤功能之最大功率追蹤演算法是十分重要的。
本文實際完成了一新型兩階段式最大功率追蹤演算法。為了確保擁有精準及快速的追蹤能力,本方法結合了擾動觀察法以及基於數學模型之狀態估測技術。為了驗證本文所提之方法之正確性,本文實際完成一600W的最大功率追蹤電路。實驗結果證實與固定步階式擾動觀察法和變動式步階擾動觀察法相比,本方法的追蹤速度分別提高了84.6%和76%。此外,追蹤電能損失也分別減少了68.48%和47.5%。


Photovoltaic generation system (PGS) gains popularity in the market due to the advantages of free fuel consumption, low maintenance cost and environmental sustainability. For PGS, maximum power point tracking (MPPT) is one of the essential part since it can maximize the utilization of solar energy when the PGS is installed in the area with rapidly changing irradiance. There is certain amount of energy loss if MPPT system fails to instantly operate at the MPP. Consequently, it is very crucial to develop a novel MPPT method featuring fast tracking. In this thesis, a novel two-stage MPPT technique is proposed. The proposed method combines the well-known perturb and observe (P&O) method and model-based state estimation technique to ensure an accurate and high speed tracking. To validate the proposed MPPT algorithm, a 600 W prototyping circuit is also constructed. Comparing with conventional P&O method and variable step-size P&O method, the tracking speed of the presented method can be improved by 84.6 % and 76 %, respectively. In addition, the tracking energy loss can be improved by 68.48 % and 47.5 %, respectively.

摘要I AbstractII 誌謝III 目錄IV 圖目錄VII 表目錄X 第一章 緒論1 1.1 研究背景與動機1 1.2 研究目的3 1.3 文獻探討3 1.4 本文提出之太陽能最大功率追蹤系統架構4 1.5 論文大綱5 第二章 太陽能電池介紹6 2.1 太陽能電池簡介6 2.2 太陽能電池原理6 2.3 太陽能電池種類7 2.4 太陽能電池電氣特性9 第三章 太陽能最大功率追蹤技術13 3.1 最大功率追蹤技術簡介13 3.2 最大功率追蹤技術13 3.2.1 開路電壓法13 3.2.2 短路電流法14 3.2.3 直接量測法15 3.2.4 擾動觀察法16 3.2.5 增量電導法17 3.3 各追蹤方法比較20 第四章 太陽能最大功率追蹤系統之硬體架構設計21 4.1 升壓式轉換器介紹22 4.2 升壓式轉換器之動作原理22 4.3 升壓式轉換器電路主要元件規格設計27 第五章 太陽能最大功率追蹤系統之韌體架構設計32 5.1 數位訊號處理器簡介33 5.2 濾波器34 5.2.1 類比濾波器35 5.2.2 數位濾波器35 5.2.3 有限脈衝響應濾波器37 5.2.4 有限脈衝響應濾波器設計38 5.3 數位PID控制器41 5.3.1 PID控制原理41 5.3.2 數位PID控制器設計42 5.4 本文進行比較之最大功率追蹤技術簡介45 5.4.1 固定步階式擾動觀察法45 5.4.2 變動步階式擾動觀察法[3,4]47 5.5 太陽能電池狀態估測之應用50 5.5.1 加權最小平方狀態估測法[40-43]50 5.5.2 太陽能電池加權最小平方狀態估測推導[9]51 5.5.3 適用於太陽能發電系統之兩段式最大功率追蹤技術55 5.5.4 簡化型加權最小平方狀態估測法59 5.6 韌體主程式架構60 第六章 實驗模擬與結果分析62 6.1 實驗設備與環境介紹62 6.2 太陽能最大功率追蹤系統模擬及性能評估66 6.3 太陽能最大功率追蹤系統模擬68 6.3.1 固定步階式擾動觀察法模擬69 6.3.2 變動步階式擾動觀察法模擬70 6.3.3 兩段式最大功率追蹤技術模擬73 6.3.4 狀態估測之敏感度分析模擬77 6.4 太陽能最大功率追蹤系統實測80 6.4.1 固定步階式擾動觀察法實測80 6.4.2 變動步階式擾動觀察法實測81 6.4.3 兩段式最大功率追蹤技術實測83 6.4.4 實驗結果比較與分析86 第七章 結論與未來展望89 7.1 結論89 7.2 未來展望90 參考文獻91

[1]Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21,net/.
[2]Frankfurt School Fs-Unep Collaborating Centre, Available at: http://fs-unep-centre.org/
[3]F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang, “A Variable Step Size INC MPPT Method for PV System,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
[4]A. Loukriz, M. Haddadi and S. Messalti, “Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems, ” ISA Transactions, Vol. 62, pp. 30-38, 2015
[5]M. Killi and S. Samanta, “Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5549-5559, 2015.
[6]C. C. Hua, Y. H. Fang and W. T. Chen, “Hybrid maximum power point tracking method with variable step size for photovoltaic systems,” IET Renewable Power Generation, Vol. 10, No. 2, pp. 127-132, 2016.
[7]A. K .Abdelsalam, A. M. Massoud, S.Ahmed and P. N. Enjeti,“High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids” IEEE Transactions on Power Electronics, Vol. 26, No. 4, pp. 1010-1021, 2011.
[8]T. Radjai, L. Rahmani, S. Mekhilef and J. P. Gaubert, “Implementation of a Modified Incremental Conductance MPPT Algorithm with Direct Control Based on a Fuzzy Duty Cycle Change Estimator Using dSPACE,” Solar Energy, Vol. 110, pp. 325-337, 2014.
[9]J. H. Teng, W. H. Huang, T. A. Hsu and C. Y. Wang, “Novel and Fast Maximum Power Point Tracking for Photovoltaic Generation,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 8, pp. 4955-4966, 2016.
[10]M. Uoya and H. Koizumi, “A calculation method of photovoltaic array's operating point for MPPT evaluation based on one-dimensional newton raphson method,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 567-575, 2015.
[11]T. K. Soon and S. Mekhilef, “A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 176-186, 2015.
[12]L. V. Hartmann, M. A. Vitorino, M. B. d. R. Correa and A. M. N. Lima, “Combining model-based and heuristic techniques for fast tracking the maximum-power point of photovoltaic systems,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2875-2885, 2013.
[13]S. K. Kollimalla and M. K. Mishra, “A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 602-610, 2014.
[14]H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-Haddad and M. Chiaberge, “A new sensorless hybrid mppt algorithm based on fractional short-circuit current measurement and P&O MPPT,” IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1426-1434, 2015.
[15]K. Sundareswaran, V. Vigneshkumar, P. Sankar, S. P. Simon, P. Srinivasa Rao Nayak and S. Palani, “Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 187-200, 2016.
[16]Y. Mahmoud, M. Abdelwahed and E. F. El-Saadany, “An enhanced MPPT method combining model-based and heuristic techniques,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 576-585, 2016.
[17]X. Li, H. Wen, L. Jiang, W. Xiao, Y. Du and C. Zhao, “An improved MPPT method for PV System with fast-converging speed and zero oscillation,” IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 5051-5064, 2016.
[18]R. Koad, A. F. Zobaa and A. El Shahat, “A novel MPPT algorithm based on particle swarm optimisation for photovoltaic systems,” IEEE Transactions on Sustainable Energy, pp. 1-1, 2016.
[19]陳敬孝,「基於分段搜尋法之太陽能全域最大功率追蹤」國立台灣科技大學電機工程系博士學位論文,民國104 年 7 月。
[20]齋藤勝裕,「3小時讀通太陽能電池」,世茂出版有限公司,民國101年5月。
[21]顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」,全威圖書,民國98 年10 月。
[22]翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」,東華書局,民國99 年5 月。
[23]H. A. Sher, A. F. Murtaza, K. E. Addoweesh and M. Chiaberge, “An Intelligent Off-line MPPT Technique for PV Applications,” IEEE Conference on System Process & Control (ICSPE), Kuala Lumpur, Malaysia, pp. 316-320, 2013.
[24]蔡俊嘉,「非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究」國立台灣科技大學電機工程系碩士學位論文,民國102 年 1 月。
[25]F. Vhekired, A. Mellit, S. A. Kalogirou and C.Larbes, “Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: A comparative study,”Solar Energy, Vol. 101, pp. 83-99, 2014.
[26]N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, Vol. 20, No.4, pp. 963-973, 2005.
[27]Y. C. Kuo, T. J. Liang and J. F. Chen, “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System,” IEEE Transactions on Industrial Electronics, Vol.48, No. 3, pp. 594-601, 2001.
[28]K. Ishaque and Z. Salam, “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition,” Renewable and Sustainable Energy Reviews, Vol. 19, pp. 475-488, 2013.
[29]R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2nd Edition, Kluwer Academic Publishers, 2001.
[30]王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
[31]梁適安,「交換式電源供給器之理論與實務設計」,全華圖書,民國93年10月。
[32]江炫樟,「電力電子學」第三版,全華圖書,民國94年8月。
[33]A. I. Pressman, K. Billimgs and T. Morey, “Switching Power Supply Design,” 3 Edition, McGraw-Hill Professional, 2009.
[34]Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,” Available at: http://www.microchip.com.
[35]Microchip Technology Inc., “dsPIC30F/33F Programmer’s Reference Manual,” Available at: http://www.microchip.com.
[36]曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國98 年 12 月。
[37]郭書瑋, “應用於微電網系統之高效能雙向直流/直流轉換器,” 國立台灣科技大學電子工程系博士學位論文, 民國103年5月.
[38]賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007 年。
[39]劉金琨,「先進PID 控制-MATLAB 仿真」,電子工業出版社
[40]D. S. Babu, K. Jamuna and B. Aryanandiny,“Power System State Estimation-A Review,”ACEEE Int.J. on Electrical and Power Engineering, Vol. 5, No.1, 2014
[41]F. F. Wu,“Power system state estimation: a survey,”International Journal of Electrical Power & Energy Systems, Vol. 12, No. 2, pp.80-87,1990
[42]M. E. Baran and A. W. Kelley,“State Estimation for real-time monitoring of distribution systems,”IEEE Transactions on Power Systems, Vol. 9, No. 3, 1994
[43]鄧銘華,「配電系統狀態估測與應用」國立台灣大學電機工程系碩士學位論文,民國88年。

無法下載圖示 全文公開日期 2022/08/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE