簡易檢索 / 詳目顯示

研究生: 吳志穎
CHIH-YING WU
論文名稱: 具輸入並聯/輸出串並聯隔離型直流/直流轉換器之風力發電系統
An Input-Parallel and Output-Series-Parallel Isolated DC/DC Converter With Maximum Power Point Tracking for Wind Turbine System
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 劉益華
Yi-Hua Liu
呂錦山
Ching-Shan Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 123
中文關鍵詞: 隔離型直流/直流轉換器串並聯輸出並聯輸入最大功率追蹤風力發電機
外文關鍵詞: wind turbine, maximum power point tracking, parallel input, series-parallel output, isolated DC/DC converter
相關次數: 點閱:293下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在設計與製作新的直流/直流轉換器系統,系統以三台相移式全橋轉換器與串並聯電路所構成。三組的相移式全橋轉換器輸入側以並聯連接,輸出側則接至串並聯切換電路做串聯或並聯連接,使得三組相移式全橋轉換器的輸出有串聯與並聯九種不同輸出模式,並透過風力發電機所輸出的電壓值和功率來判斷模式。在較低的切入電壓時,串聯狀態使轉換器分壓輸出達成高輸出電壓增益,當風力發電機達到各模式可相對應之輸入功率時,再透過三台額定功率不同之相移式全橋轉換器輸出端採用並聯連接分擔輸出電流切換模式,配合擾動觀察法的最大功率點追蹤策略可使風力發電系統在變化的環境之下有最佳功率輸出,並且在整個操作範圍內得到更高的效率,本論文建立一5kW系統進行評估以及測試,並透過模擬與實驗結果來驗證提出之架構的可行性。


    The subject of this thesis is to design and implement a wind turbine power generation system. The proposed structure consists of three phase-shift H-bridge converters and series parallel switching circuit. The three input sides of the H-bridge converters are paralleled directly, while the output sides can be connected in parallel and/or series through a series parallel switching circuit, which makes the three H-bridge converters output nine different connection configurations determined by the value of the input voltage and power which are generated and rectified from a wind turbine generator. The series status makes the converters to obtain high voltage gain with lower cut-in voltage. When rated power of the wind turbine is reached, the parallel status enables the H-bridge converters to share the load current. Also by cooperating with the well-known load-disturbance method for maximum power point tracking strategy. The proposed converter can obtain higher efficiency of the converter system over the whole operation range. Finally, this thesis established a 5kW prototype with using the digital signal processor (DSP TMS320F28069) as the digital controller. Both simulation and experimental results demonstrate the validity of the proposed converter.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 1 表目錄 5 第一章 緒論 7 1.1 研究背景與動機 7 1.2系統描述與研究方法 8 1.3內容大綱 9 第二章 風力發電機特性 11 2.1風力發電機工作原理 11 2.2風力發電機種類 15 2.3最大功率追蹤法則介紹 18 第三章 系統架構與原理 23 3.1 隔離型直流/直流轉換器 23 3.1.1 相移式全橋轉換器主架構介紹 24 3.1.2 相移式全橋轉換器主電路控制信號介紹 25 3.1.3 主電路轉換狀態區間操作原理分析 26 3.1.4 零電壓切換條件分析 37 3.2 轉換器規格分配介紹 39 第四章 串並聯模式切換控制策略與模擬 44 4.1 轉換器輸入輸出串並聯連接介紹 44 4.2 串並聯切換電路 47 4.2.1串並聯切換電路主架構介紹 47 4.2.2串並聯切換電路主電路控制訊號介紹 48 4.2.3 串並聯切換電路轉換狀態區間操作原理 49 4.3模式切換介紹 54 4.3.1模式切換控制策略 54 4.4模式切換之模擬 56 4.4.1模式上升切換策略與模擬 57 4.4.2模式下降切換策略與模擬 65 第五章 硬體架構與軟體規劃 73 5.1硬體架構 73 5.1.1相移式全橋轉換器硬體設計實例 74 5.1.2相移式全橋轉換器軟體控制策略 88 5.2串並聯切換電路設計考量 95 5.2.1串並聯切換電路硬體設計實例 96 5.2.2串並聯切換電路軟體控制策略 97 第六章 實作與量測 99 6.1並聯輸入串並聯輸出隔離型直流/直流轉換器 100 第七章 結論與未來研究方向 119 7.1結論 119 7.2未來研究方向 119 參考文獻 121

    [1] 牛山泉,「風力能源與風力發電系統設計」,科技圖書股份有限公司,2011。
    [2] Z. Yu, M. Elbuluk, and Y. Sozer, “Stability analysis of maximum power point tracking (MPPT) method in wind power systems,” IEEE Trans. Industry Applications., vol.49, no.3, pp. 1129-1136, 2013.
    [3] H. Kun and C. Guo-zhu, “A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform,” in Proc. IEEE IPEMC,2009, pp. 2255-2259.
    [4] A. B. Raju, K. Chatterjee, and B. G. Fernandes, “A simple maximum power point tracker for grid connected variable speed wind energy conversion system with reduced switch count power converters,” in Proc. IEEE PESC, 2003, vol. 2, pp. 748-753.
    [5] K. Tan and S. Islam, “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE Trans. Power and Energy., vol. 19, pp. 392-399, 2004.
    [6] W. Quincy and C. Liuchen, “An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Trans. Power Electronics., vol. 19, pp. 1242-1249, 2004.
    [7] 林正宏,「1kW 全橋相移式升壓型零電壓切換轉換器之研製」,碩士學位論文,國立臺灣科技大學,2010。
    [8] 黃廷熙,「高電壓輸出全橋相移式轉換器之研製」,碩士學位論文,國立臺灣科技大學,2007。
    [9] 劉翼德,「高電壓輸出之零電壓切換相移式全橋升壓型轉換器的分析及研製」,碩士學位論文,國立臺灣科技大學,2004。
    [10] 張存安,「風力發電最大功率追蹤之並聯輸入串並聯輸出隔離型直流/直流轉換器研製」,碩士學位論文,國立臺灣科技大學, 2012。
    [11] 蕭智文,「風力發電系統之並聯輸入串並聯輸出隔離型直流/直流轉換器」,碩士學位論文,國立臺灣科技大學,2013。
    [12] N.Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd ed. New York: Wiley, 2003.
    [13] M. R. Patel, Wind and Solar Power Systems: Design, Analysis, and Operation: Taylor & Francis, 2006.
    [14] 朱佳仁,「風工程概論」,科技圖書股份有限公司,2006。
    [15] 王建斌,「風力發電系統最大功率追蹤方法之研究」,碩士學位論文,中原大學,2005。
    [16] 王寶勝,「以數位信號處理器為基礎之具可控整流風力與太陽能複合發電系統之研製」,碩士學位論文,國立臺灣科技大學,2009。
    [17] 鄭堅宏,「雙風力機發電系統之電力轉換器研製」,碩士學位論文,雲林科技大學,2010。
    [18] 曹培熙,「大學物理學」,曉園出版社有限公司,1989。
    [19] J. A. Gow and C. D. Manning, “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” IEE Electric Power Applications, vol. 147, pp. 15-20, 2000.
    [20] C. C. Hua and J. R. Lin, “Fully digital control of distributed photovoltaic power systems,” in Proc. IEEE ISIE, 2001, vol. 1, pp. 1-6.
    [21] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” in Proc. IEEE ICEM, 2008, pp. 1-6.
    [22] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel speed-sensorless adaptive hill climbing algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” in Proc. IEEE ICSET, 2008, pp. 628-633.
    [23] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking,” IEEE Trans. Power and Energy., vol. 17, pp. 514-522, 2002.
    [24] K. Harada and G. Zhao, “Controlled power interface between solar cells and AC source,” IEEE Trans. Power Electronics., vol. 8, pp. 654-662, 1993.
    [25] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Generation, Transmission and Distribution, vol. 142, pp. 59-64, 1995.
    [26] Y. T. Hsiao and C. H. Chen, “Maximum power tracking for photovoltaic power system,” IAS Industry Applications Conference, vol. 2, pp. 1035-1040, 2002.
    [27] C. C. Wang, M. C. Wu, K. J. Lin, and C. R. Lin, “Analysis and research maximum power point tracking of photovoltaic array,” in Proc. IEEE ICCCA, 2010, pp. 196-200.
    [28] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC, 1999, vol. 2, pp. 901-908.
    [29] J. Cheng, J. Shi, and X. He, “A novel input-parallel output-parallel connected DC-DC converter modules with automatic sharing of currents,” in Proc. IEEE IPEMC, 2012, pp. 1871-1876.
    [30] J. Shi, L. Zhou, and X. He, “Common-Duty-Ratio Control of Input-Parallel Output-Parallel (IPOP) Connected DC-DC Converter Modules With Automatic Sharing of Currents,” IEEE Trans. Power Electronics., vol. 27, no. 7, pp. 3277-3291, 2012.
    [31] S. N. Manias and G. Kostakis, “Modular DC-DC convertor for high-output voltage applications,” IEE Electric Power Applications, vol. 140, no. 2, pp. 97-102, 1993.
    [32] L. Wang, “Input-Parallel and Output-Series Modular DC-DC Converters with One Common Filter,” in Proc. IEEE EUROCON, 2007, pp. 1398-1402.
    [33] Y. Zhao; W. Li, W. Li, and X. He, “An active clamp ZVT converter with input-parallel and output-series configuration,” in Proc. IEEE APEC, 2010, pp.1454-1459.
    [34] R. Giri, R. Ayyanar, and E. Ledezma, “Input-series and output-series connected modular DC-DC converters with active input voltage and output voltage sharing,” in Proc. IEEE APEC, 2004, vol. 3, pp. 1751-1756.
    [35] W. Chen, K. Zhuang, and X. Ruan, “A input-series and output-parallel-connected inverter system for high-input-voltage applications,” IEEE Trans. Power Electronics, vol. 24, no. 9, pp. 2127-2137, 2009.
    [36] Q. Lu, Z. Yang, S. Lin, S. Wang, and C. Wang, “Research on voltage sharing for input-series-output-series phase-shift full-bridge converters with common-duty-ratio,” in Proc. IEEE IECON, 2011, pp. 1548-1553.
    [37] J. Shi, J. Luo, and X. He, “Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC–DC converter modules,” IEEE Trans. Power Electronics., vol. 26, no. 11, pp. 3318-3329, 2011.
    [38] J. P. Lee, B. D. Min, T. J. Kim, D. W. Yoo, and J. Y. Yoo, “High efficient interleaved input-series-output-parallel-connected DC/DC converter for photovoltaic power conditioning system,” in Proc. IEEE ECCE, 2009, pp. 327-329.
    [39] R. Ayyanar, R. Giri, and N. Mohan, “Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme,” IEEE Trans. Power Electronics., vol. 19, no. 6, pp. 1462-1473, 2004.

    QR CODE