簡易檢索 / 詳目顯示

研究生: 趙仁毅
Jen-Yi Chao
論文名稱: 應用於太陽能發電系統之交錯式高升壓比多階層轉換器
Interleaved High Step-Up Multilevel Converter for Photovoltaic Generation System
指導教授: 楊宗銘
Chung-ming Young
口試委員: 陳良瑞
Liang-Rui Chen
陳明宏
Ming-Hong Chen
呂錦山
Ching-Shan Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 交錯式Cockcroft-Walton倍壓器太陽能光電板最大功率追蹤
外文關鍵詞: Interleaved, Cockcroft-Walton, Photovoltaic modules, Maximum Power Point Tracking
相關次數: 點閱:283下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一交錯式高升壓比多階層轉換器,可應用在太陽能光電板之低電壓輸出特性發電系統。此轉換器由兩級電路所組成,前級電路基於Cockcroft-Walton(CW)倍壓器之高升壓比特性,無須使用升壓變壓器即可達到直流高電壓輸出,且以交錯式方式控制降低輸入電流漣波。後級電路因CW倍壓器輸出電容串接的特性,結合五階層變流器,以提供單相60Hz交流電源並降低輸出電壓諧波。本文將轉換器應用於太陽能發電系統,使用擾動觀察法作為最大功率點追蹤控制策略,以數位信號處理器(DSP, TMS320F28069)數位方式實現,使太陽能達到最大功率輸出,並以電壓紀錄器紀錄系統日功率變化以驗證其正確性。


    This thesis proposes an interleaved high step-up multilevel converter for low-voltage dc generation systems such as photovoltaic modules. The converter consists of a two-stage power converter topology. The first stage converter can provide high step-up ratio without using the step-up transformers based on the high step-up ratio characteristic of Cockcroft-Walton (CW) voltage multiplier and reduce input current ripple due to interleaved operation. Because of the output side of CW multiplier consists of cascaded capacitors, the second stage utilizes five-level inverter to provide single phase 60Hz ac output and reduce output voltage harmonic distortion. In additional, the converter is applied to photovoltaic generation system. The perturbation and observation method is used for maximum power point tracking to achieve the maximum output power of solar energy and implemented by a digital signal processor (DSP, TMS320F28069). The validity of the proposed solar system is verified by a voltage recorder recording the variation of the power from system in whole day.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論… 1 1.1 研究背景與動機 1 1.2 系統描述與研究方法 2 1.3 內容大綱 3 第二章 太陽能發電特性 5 2.1 前言 5 2.2 太陽能電池 5 2.2.1 太陽能電池工作原理 6 2.2.2 太陽能電池種類 7 2.2.3 太陽能光電板特性 9 2.3 太陽能最大功率追蹤法則 13 2.3.1 電壓迴授法 14 2.3.2 功率迴授法 14 2.3.3 擾動觀察法 15 2.3.4 增量電導法 17 2.3.5 直線近似法 17 2.3.6 實際量測法 18 第三章 交錯式高升壓比多階層轉換器 19 3.1 前言 19 3.2 傳統Cockcroft-Walton倍壓器 20 3.3 交錯式高升壓比直流/直流轉換器 21 3.3.1操作模式分析 22 3.3.2電壓增益及輸入電流漣波推導 33 3.3.3電路元件設計 35 3.4 多階層變流器 39 3.4.1多階層變流器種類 40 3.4.2 多階層變流器控制策略 45 第四章 硬體架構與軟體規劃 48 4.1 前言 48 4.2 硬體架構 48 4.2.1 硬體架構 50 4.2.2 周邊電路 50 4.3 軟體規劃 52 4.3.1 數位信號處理器 53 4.3.2 類比數位轉換比例設計 54 4.3.3 程式流程介紹 54 第五章 模擬與實作 59 5.1 前言 59 5.2 交錯式高升壓比多階層轉換器模擬與實作 60 5.2.1直流/直流轉換器模擬與實作 60 5.2.2直流/直流轉換器結合五階層變流器模擬與實作 66 5.3太陽能最大功率點追蹤紀錄 73 第六章 結論與未來研究方向 76 6.1 結論 76 6.2 未來研究方向 76 參考文獻 78

    [1] Herzog, A.V., Lipman, T.E., Edwards, J.L., Kammen, D.M., “Renewable energy: A vaiable choice,” Environment, vol. 43, no. 10, pp. 8-20, 2001.

    [2] 張建偉,「太陽能電池最大功率點追蹤之研究」,碩士學位論文,國立成功大學,民國九十八年一月。

    [3] 莊嘉琛,「太陽能工程-太陽能電池篇」,全華書局出版社,1997。

    [4] 吳財福、陳裕愷、張健軒,「太陽光電能供電能與照明系統綜論」,第二版,全華書局出版社,2007。

    [5] 王寶勝,「以數位信號處理器為基礎之具可控整流風力與太陽能複合發電系統之研製」,碩士學位論文,國立台灣科技大學,民國九十八年七月。

    [6] Salameh, Z.M., Dagher, F., Lynch, W.A., “Step-down maximum power point tracker for photovoltaic systems,” Solar Energy, vol. 46, no. 5, pp. 279-282.

    [7] Luo, F.L., “Positive output Luo converters: voltage lift technique,” IEE Proc. –Electr. Power Appli., vol.146, no.4, pp.415-432, Jul. 1999.

    [8] Harashima Fumio, Inaba Hiroshi, Kondo Seiji, Takashima Nobukazu, “Microprocessor-Controlled SIT Inverter for Solar Energy System,” IEEE Trans. Ind. Electron., vol.IE-34, no.1, pp.50-55, Feb. 1987.

    [9] Enslin, J.H.R., “Maximum power point tracking: a cost saving necessity in solar energy systems,” in Proc. IEEE Conf., 16th Annu. Conf. Ind. Electron. Soc., vol. 2, pp. 1073–1077, Nov. 27–30, 1990.

    [10] Petrone, G., Spagnuolo, G., Vitelli, M., “A Multivariable Perturb-and-Observe Maximum Power Point Tracking Technique Applied to a Single-Stage Photovoltaic Inverter,” IEEE Trans. Ind. Electron., vol.58, no.1, pp.76-84, Jan. 2011

    [11] Gow, J.A., Manning, C.D., “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” IEE Proc. –Electr. Power Appli., vol.147, no.1, pp.15-20, Jan. 2000.

    [12] Sullivan, C.R., Powers, M.J., “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” in Proc. IEEE PESC, 1999, pp.574-580.

    [13] Hussein, K.H., Muta, I., Hoshino, T., Osakada, M., “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” in Proc. Inst. Elect. Eng.—Generation, Transmiss. Distrib., vol.142, no.1, pp.59-64, Jan. 1995.

    [14] Ching-Tsai Pan, Jeng-Yue Chen, Chin-Peng Chu, Yi-Shuo Huang, “A fast maximum power point tracker for photovoltaic power systems ,” in Proc. IEEE IECON, vol.1, pp.390-393, 1999.

    [15] Q. Li and P. Wolfs, “Recent development in the topologies for photovoltaic module integrated converters,” in Conf. IEEE PESC’06, 2006, pp. 1-8.

    [16] 溫書賢,「單相併聯太陽能發電系統之功率控制」,碩士學位論文,私立明志科技大學,民國一零一年七月。

    [17] M. C. Pera, D. Candusso, D. Hissel, and J. M. Kauffmann, “Power generation by fuel cells,” IEEE Ind. Electron. Mag., vol. 1, no. 3, pp. 28-37, Oct. 2007.

    [18] M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526-534, Jul. 1992.

    [19] 詹宜勳,「基於Cockcroft-Walton倍壓器之高升壓比直流-直流轉換器應用於太陽能發電系統」,碩士學位論文,國立台灣科技大學,民國一百年一月。

    [20] Pyosoo Kim, Sanghyuk Lee, Junsung Park, Sewan Choi, “High step-up interleaved boost converters using voltage multiplier cells,” in Conf. IEEE ICPE & ECCE, 2011, pp.2844-2851.

    [21] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Review of Scientific Instruments, vol. 40, no. 2, Aug. 1969, pp. 330-333.

    [22] F. Belloni, P. Maranesi and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space.” in Conf. IEEE-PESC. Annu. Meeting, vol. 1, Jun. 2004, pp. 439-443.

    [23] 巫昇峰,「基於曲折繞接線變壓器及特定諧波消除之三階層反流器研製」,碩士學位論文,國立台灣科技大學,民國九十六年七月。

    [24] H. van der Broeck, ”Analysis of a current fed voltage multiplier bridge for high voltage applications,” in Conf. IEEE PESC’00, 2000, vol. 4, pp. 1919-1924.

    [25] A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point clamped PWM inverter,” IEEE Trans. Ind. Applicat., vol. IA-17, no. 5, pp. 518-523, Sept. 1981.

    [26] L. M. Tolbert, F. Z. Peng and T. G. Habetler, “Multilevel PWM methods at low modulation indices,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 719-725, Jul. 2000.

    [27] C. Hpcjgraf, R. Lassrter, D. Divan and T. A. Lipo, “Comparison of multilevel inverter for static var compensation,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1994, pp. 921-928.

    [28] M. F. Escalante, J. C. Vannier and A. Arzande, “Flying capacitor multilevel inverters and DTC motor drive applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 809-815, Aug. 2002.

    [29] Corzine, K., Familiant, Y., “A new cascaded multilevel H-bridge drive,” IEEE Trans. Power Electron., vol.17, no.1, pp.125-131, Jan. 2002.

    [30] Fang Zheng Peng, Jih-Sheng Lai, “Dynamic performance and control of a static VAr generator using cascade multilevel inverters,” IEEE Trans. Ind. Applicat., vol.33, no.3, pp.748-755, May/Jun. 1997.

    [31] Rodriguez, J., Jih-Sheng Lai, Fang Zheng Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electro., vol.49, no.4, pp. 724- 738, Aug. 2002.

    [32] Tolbert, L.M., Habetler, T.G., “Novel multilevel inverter carrier-based PWM method,” IEEE Trans. Ind. Applicat., vol.35, no.5, pp.1098-1107, Sep/Oct. 1999.

    [33] McGrath, B.P., Holmes, D.G., “Multicarrier PWM strategies for multilevel inverters,” IEEE Trans. Ind. Electro., vol.49, no.4, pp. 858- 867, Aug. 2002.

    [34] Agelidis, V.G., Calais, M., “Application specific harmonic performance evaluation of multicarrier PWM techniques,” in Proc. IEEE Appl. Power Electron. Conf., May 1998, vol. 1, pp. 172–178.

    [35] Carrara, G., Gardella, S., Marchesoni, M., Salutari, R., Sciutto, G., “A new multilevel PWM method: a theoretical analysis,” IEEE Trans. Power Electron., vol.7, no.3, pp.497-505, Jul. 1992.

    QR CODE