簡易檢索 / 詳目顯示

研究生: 廖益昌
YI-Chang Liao
論文名稱: 大尺寸液晶電視之數位化電源研製
Design and Implementation of a Digitalized Power Supply for Large Size LCD TVs
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧仁豪
Jen-Ho Teng
羅有綱
Yu-Kang Lo
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 液晶電視交錯式連續導通模式功率因數修正器LLC諧振轉換器返馳式轉換器數位變頻控制PID控制器。
外文關鍵詞: LCD TV, Interleaved Continuous Conduction Mode PFC, LLC Series Resonant Converter, Fly-back Converter, Digitally Variable Frequency Control, PID Controller
相關次數: 點閱:288下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據IFA之研究報告,未來大尺寸液晶電視仍是市場的主流。在環保與節能的議題下,創新電源供應的設計也將成為未來勝出的關鍵,因此消費性電子產業將面臨新技術及新概念的挑戰。
    本篇論文主要目的是研製適用於大尺寸液晶電視的數位化電源,整體系統架構可分為三個主要部分:前級使用交錯式連續導通模式操作的功率因數修正電路作為前置調節器,以改善功率因數並減少輸入電流之總諧波失真。後級則使用以Microchip dsPIC30F2020為數位控制核心的LLC串聯諧振轉換器,以達到數位變頻控制、減少元件成本及提供更彈性的設計之目的,最後採用一組返馳式轉換器作為待機及輔助電源。藉由數位方式實現PID控制器,完成液晶電視的數位化電源。實驗結果證實所提出系統之可行性。


    According to a report from IFA (International Funkausstellung Association), large size LCD TV is expected to become the mainstream of the near future. The requirement of larger size LCD panel places new challenges and requirements in TV power architectures. These trends are dictated by the need for lower power losses, lower EMI and reduced costs. The choice of appropriate topology for the main power stage is dependent on factors such as power level and output requirements. While the flyback approach is very popular, the LLC half-bridge converter provides significant reduction in power losses and is relatively simple in that it does not require output inductor. These benefits make it a convenient choice for the high power LCD TV power supply design.
    The main purpose of this thesis is to research and implement a digitalized power supply for large scale LCD TV. The whole system configuration can be divided into three major parts. An interleaved continuous conduction mode power factor corrector in front stage is used as pre-regulator for improving the input power factor and reducing the total harmonic distortion. The dsPIC30F2020 from Microchip corp. is used as the digital variable frequency controller of LLC series resonant converter. The advantages of the digital controller include components cost reduction and more flexible design. Finally, a flyback converter is adopted as standby and auxiliary power supplies. Experimental results will be given to validate the correctness of the proposed system and some simple conclusions will be made.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究內容 3 1.4 論文大綱 5 第二章 主動式功率因數修正電路原理簡介 6 2.1 電流諧波 6 2.2 功率因數與諧波失真之定義 7 2.3 升壓型功率因數修正器電路架構及原理簡介 8 2.4 APFC控制模式介紹 11 2.5 雙相交錯式升壓型轉換器介紹 13 2.6 雙相交錯式升壓型轉換器動作時序分析 15 2.7 小結 20 第三章 半橋式串聯諧振轉換器 21 3.1 半橋式串聯諧振網路簡介 21 3.1.1 串聯諧振串聯負載 22 3.1.2 串聯諧振並聯負載 23 3.1.3 串聯諧振串並聯負載 25 3.1.4 結論 27 3.2 半橋式串聯諧振轉換器原理 28 3.2.1 理想RLC串聯諧振電路頻率響應分析 28 3.2.2 LLC諧振轉換器頻率響應分析 30 3.3 LLC串聯諧振轉換器動作分析及數學模型推導 36 3.3.1 Region-1之電路動作分析 36 3.3.2 Region-2之電路動作分析 47 3.4 小結 54 第四章 硬體電路規格制定及設計 56 4.1 雙向交錯式主動功率因數修正電路設計 56 4.1.1 UCC28070 IC簡介 56 4.1.2 電路規格制定 57 4.1.3 電路元件之設計與選用 58 4.1.4 硬體電路佈局(Layout)考量 61 4.2 LLC諧振轉換器電路設計 61 4.2.1 L6599 IC簡介 61 4.2.2 電路規格制定 62 4.2.3 電路元件之設計與選用 62 4.2.4 硬體電路佈局(Layout)考量 67 第五章 以數位控制核心為基礎之LLC諧振轉換器電源系統 68 5.1數位核心控制器及硬體簡介 68 5.2系統架構 70 5.3程式流程規劃 71 5.4 類比/數位轉換 72 5.5 數位PID控制器簡介、設計及調校 73 5.6 互補式脈波寬度調變之變頻控制 78 5.7 小結 81 第六章 輔助電源 82 6.1 前言 82 6.2 各類輔助電源拓樸介紹暨優缺點比較 82 6.3 單晶片交換式電源簡介 85 6.4 輔助電源架構 86 6.5 輔助電源規格制訂與設計 87 6.6 硬體電路佈局(Layout)考量 89 第七章 實驗結果與討論 90 第八章 結論與未來展望 112 8.1 結論 112 8.2 未來研究方向 112 參考文獻 114 附錄一 119

    [1]王智弘,「分食液晶電視電源商機大餅,AC/DC晶片商各顯神通」,新電子雜誌第 264期,2008年3月號。
    [2]王智弘,「瞄準節能新趨勢,電源晶片商攻勢連連」,新電子雜誌第 269期, 2008年8月號。
    [3]J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [4]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
    [5]R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
    [6]L. H. Dixon, “High power factor pre-regulators for off-line power supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [7]L. H. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [8]L.H. Dixon, “High power factor pre-regulation design optimization,” Unitrode Application Note, TOPIC7, pp. 1-12.
    [9]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [10]Woo-Young Choi and Bong-Hwan Kwon, “An efficient power factor correction scheme for plasma display panels,” J. Display. Technologies, vol. 4, no. 1, pp. 70-80, Mar. 2008.
    [11]Gang Yao, Alian Chen and X. He, “Soft switching circuit for interleaved boost converters,” IEEE Trans. Power Electronics, vol. 22, no. 1, pp. 80-86, Jan. 2007.
    [12]J. A. C. Pinto, A. A. Pereira, V. J. Farias, L. C. de Freitas, and J. B. Vieira, “A power factor correction pre-regulator ac-dc interleaved boost with soft-commutation,” IEEE Proc. Power Electronics Specialist Conference, 1997, pp. 121-125.
    [13]Bor-Ren Lin, “Interleaved ZVS converter with ripple-current cancellation,” IEEE Trans. Industrial Electronics, vol. 55, no. 4, pp. 1576-1585, 2008.
    [14]Chin Chang, “Interleaving technique in distributed power conversion systems,” IEEE Trans. Circuits and Systems, vol. 42, no. 5, pp. 245-251, 1995.
    [15]Jiun-Ren Tsai, “Interleaving phase shift for critical mode boost PFC,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1348-1357, 2008.
    [16]Texas Instruments, “Two phase interleaved CCM (Average Current Mode) PFC controller,” Data Sheet, Preliminary, Oct. 2007.
    [17]Michael O’Loughlin, “An Interleaved PFC Pre-regulator for High Power Converters,” Texas Instruments Application Note, Topic 5, pp. 1-14.
    [18]Mike O’Loughlin, “PFC pre-regulator frequency dithering circuit,” Texas Instruments Application Report. SLUA, pp. 1-8, 2007.
    [19]K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans, Power Electronics, vol. 5, pp. 293-304, July 1990.
    [20]J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS analysis of asymmetrical half-bridge converter,” IEEE Proc. Power Electronics Specialist Conference, vol. 1, pp. 243-247, 2001.
    [21]R. Liu and C. Q. Lee, “The LLC-type series resonant converter variable switching frequency control,” Proc. Midwest Symposium Circuits and Systems, vol. 1, pp. 509-512, Aug. 1989.
    [22]B.Yang, F. C. Lee, A. J. Zhang and G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 1108-1112, Mar. 2002.
    [23]Philips Research Lab., “First harmonic approximation including design constraints,” Annual International Telecommunications Energy Conference, pp. 321-328, 1998.
    [24]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Industrial Electronics, vol. 31, no. 2, pp. 181-191, May 1984.
    [25]T. Liu, Z. Zhou, A. Xiong, J. Zeng, and J. Ying, “A novel precise design method for LLC series resonant converter,” Annual International Telecommunications Energy Conference, pp. 533-538, 2006.
    [26]Bo Yang, “Topology investigation for front End DC/DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, Virginia Tech, Blacksburg, VA, USA, Feb. 2003.
    [27]B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.533-538, 2006.
    [28]K. Liu, R. Oruganti and F. C. Lee, “Resonant switches topologies and characteristics,” IEEE Proc. Power Electronics Specialist Conference, pp. 106-116, 1987.
    [29]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, vol. 2, pp. 728-735, 2001.
    [30]F. C. Lee, “High-frequency quasi-resonant converter technologies,” IEEE Proc. Power Electronics Specialist Conference, vol. 76, no. 4, pp.377-390, Apr. 1988.
    [31]ST Microelectronics, “LLC resonant half-bridge converter design guideline,” Application Note, AN2450, Oct. 2007.
    [32]ST Microelectronics, “High voltage resonant controller,” Data sheet, L6599, July. 2006.
    [33]Fairchild, “Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Application Note, AN-4151, Oct. 2007.
    [34]J. H. Jung and J. G. Kwon, “Theoretical analysis and optimal design of LLC resonant converter,” IEEE Proc. Applied Power Electronics Conference and Exposition, pp.1-10, 2007.
    [35]Shinry Technologies,「平面電視電源技術及發展趨勢」,http://www.shinry.com,2007年6月。
    [36]沙占友、梁適安,「單晶片交換式電源設計與應用技術」,全華科技圖書,2006年。
    [37]Microchip Tech, “dsPIC30F1010/202x,” Data Sheet, Preliminary, 2006.
    [38]Abraham I. Pressman, “Switching Power Supply Design,” Second Edition, 1998.
    [39]梁適安,「高頻交換式電源供應器原理與設計」,全華科技圖書,2006年。
    [40]謝明琮,「適合全載範圍操作之全橋相移式串聯諧振直流/直流轉換器研製」,國立台灣科技大學電子工程系碩士論文,民國九十六年。
    [41]鐘郁緯,「符合能源之星規範個人電腦電源供應器之研製」,國立台灣科技大學電子工程系碩士論文,民國九十七年。
    [42]劉金琨,「先進PID控制MATLAB仿真」第二版,電子工業出版社,2004年。
    [43]劉勝利、李龍文,「高頻開關電源新技術應用」,中國電力出版社,2008年。

    QR CODE