簡易檢索 / 詳目顯示

研究生: Tibebu Alemu Ayanie
Tibebu Alemu Ayanie
論文名稱: The Characterizations and Kinetic Studies of Self-Terminated Oligomers for the Improvements of Safety and Electrochemical Performance of Lithium-Ion Batteries
The Characterizations and Kinetic Studies of Self-Terminated Oligomers for the Improvements of Safety and Electrochemical Performance of Lithium-Ion Batteries
指導教授: 王復民
Fu-Ming Wang
口試委員: 王復民
Fu-Ming Wang
陳崇賢
Chorng-Shyan Chern
蔡大翔
Dah-Shyang Tsai
胡啟章
Chi-Chang Hu
張仍奎
Jeng-Kuei Chang
林正裕
Jeng-Yu Lin
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 147
中文關鍵詞: Self-terminated oligomer hyper-branched architectureThermal stabilityElectrochemical performanceSurface plasma resonanceSynchrotron radiationLi-ion battery
外文關鍵詞: Self-terminated oligomer hyper-branched architecture, Thermal stability, Electrochemical performance, Surface plasma resonance, Synchrotron radiation, Li-ion battery
相關次數: 點閱:295下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

雙馬來醯亞胺(N,N’-bismaleimide-4,4-diphenylmethane , BMI )為基底形成的超分歧結構,因
其可以提供良好的機械性質、熱穩定性而作為添加劑被應用在鋰離子電池中。先前的研究
中,研究團隊藉由雙馬來醯亞胺可以其兩個未端碳-碳雙鍵與巴比妥酸( Barbituric acid , BTA )上的活性氫進行麥可加成反應或自由基加成聚合反應後形成的高分子寡聚物
(STOBA),做為鋰離子電池正極的電極添加劑使用,並觀察到在首圈充電過程中該寡聚物
會進行聚合反應並對充電曲線造成影響。此種影響可以提高鋰離子電池的循環壽命並進一
步的在高溫環境中進行交連作用產生新的電極-電解液介面,提升電池的性能與安全性。因
此,針對該高分子寡聚物在過程中進行的聚合反應對於掌握該高分子寡聚物以及改善鋰離
子電池的安全性問題扮演著關鍵的腳色。本研究大致分為四個部分來探討此一現象:
首先,本研究將 BMI/BTA 分別於 353 K 與 403 K 下進行合成,所得之高分子寡聚物分
別為 polymer A 與 polymer B,並探討其在鋰離子電極中的電化學與熱化學性質。在此系
統下,polymer A 的結構直接麥可加成反應影響,polymer B 的結構則受麥可加成反應與第
二麥可加成反應影響。表面電漿共振的模擬結果顯示 polymer B 具有較高的結合速率常數。
polymer A 系統中有許多未進行反應的官能基團,會於首圈充放電過程中陰極材料表面形
成第二個保護層,使得電池的熱穩定性以及循環壽命表現優於 polymer B。
第二 ,本 研究使 用含有 一個 CH2 基團 的 1,3 巴比 妥酸( 1,3-Dimethylbarbituric acid , 1,3-DMBTA ) 和 含 有 兩 個 NH 基 團 的 5,5 巴 比 妥 酸 ( 5,5-Dimethylbarbituric acid , 5,5-DMBTA )與BMI分別聚合形成polymer C與polymer D,並添加於LiNi0.6Mn0.2Co0.2O2
(NMC)陰極材料中探討其熱化學穩定性。研究結果顯示 polymer D 會與活性材料中的過渡
金屬離子形成錯合物,可有效協助電子傳導並改善電極材料發生的熱降解問題。
第三,此部分探討藉由甲基取代巴比妥酸( Barbituric acid , BTA )上 N1、N3 的活性氫位置,
對於鋰離子電池陰極材料安全性質的影響。結果顯示與 polymer A 相比,甲基取代後的結
構會在第一圈充放電過程中於陰極料表面進行自身聚合。polymer C 的結果顯示該分子由於
沒有自由的氫原子可以於 NMC 陰極材料表現進行自身聚合,導致其在電池循環壽命與安
全性的表現上較差。
第四、本研究探討 dimethyl 對 BTA 的 C5 位置進行改質後的影響。和 polymer D 不同,以
polymer B 進行表面修飾的樣品,由於其高分歧結構對於鋰離子的擴散較差,因此不會與陰
極材料表現形成錯合物或受陰極材料的影響進行自身聚合,使其在電池性能的表現上較差。
本研究結合光學、電化學、熱化學以及同步輻射分析等數種不同的特性分析技術來探討鋰
離子電池電極添加劑 STOBA 的最佳運作結構與條件。


N,N’-bismaleimide-4,4’-diphenylmethane (BMI) based polymers exhibiting a
hyperbranched structure that offers excellent mechanical properties, chemical resistance, thermal
stability and attractive performance in lithium-ion batteries (LIBs). With the reactive two
terminals, BMI can be polymerized with active H-atom containing species such as barbituric acid
(BTA) and it's derivative via the Michael addition, Aza-Michael addition and free radical
reaction mechanisms. Once the cathode materials are coated with such polymers (known as
STOBA), an electrochemical reaction causes further polymerization in first charging step; then
enhances the performance in successive cycles and thermally cross-linked at high temperature to
prevent the electrode-electrolyte interaction. Thus, monitoring its polymerization reactions and
studying the detail safety mechanism could play a vital role in optimizing the working condition
of STOBA in the development of LIB technology. This thesis contains four motivations. The first motivation is the kinetic study of BMI/BTA synthesized at 353 K (polymer A)
and at 403 K (polymer B), its thermal and electrochemical impact on LIBs. The Michael addition
reaction controls the overall process with insignificant Aza-Michael addition product in polymer
A; however, both reaction mechanisms are operative in polymer B fashioning an extra
cross-linked adduct. The simulation result from surface plasma resonance indicates the high
binding rate constant is obtained in polymer B. Owing to the presence of unreacted functional
group, the cathode material treated with polymer A could undergo electrochemical reactions in
the first cycle and form secondary protective layer by virtue of thermal heating; it has shown
phenomenal thermal stability and good performance as compared to the cathode modified with
polymer B.
The second motivation is probing the surface properties and thermochemical effect of
LiNi0.6Mn0.2Co0.2O2 (NMC) cathode material modified with the polymer obtained from BMI with
1,3-dimethylbarbituric acid (1,3BTA) and 5,5-dimethylbarbituric acid (5,5BTA). It is noteworthy
that 1,3BTA contains only one -CH2 group, whereas 5,5BTA contains two -NH groups per
molecule. Accordingly, BMI/5,5BTA (polymer D) showed the structural difference and forms
the stable complex with transition metal ions of active material; fostered the ionic as well as
electronic transfer and prohibited the thermal degradation of the battery as compared to cathode
treated with BMI/1,3BTA (polymer C). The third motivation is the detail investigation on the effect of methyl substitution at N1, N3 position of BTA on the safety mechanism of cathode material. Comparing with the cathode
modified by polymer A (un-substituted BTA; with two free N-H groups) could electrochemically
self-polymerize in first charge/discharge process and form rigid structure upon thermally heated
at high temperature. However, the structure of polymer C (di-substituted) is noticeable affects
the surface kinetics of NMC and has no free H-atoms to initiate self-polymerizations. These lead
to poor safety and cycle performance while the overall result of battery modified with polymer A
shows improved cycle performance and minimized safety issues. The fourth and last motivation is the analysis of the effect of dimethyl substitution at C5
comparing with un-substituted BTA on the safety mechanism of LIBs. According to the result, the cathode surface modified by polymer B (un-substituted) could not electrochemically and
thermally polymerize in charge/discharge and at elevated temperature. Because of the
hyper-branched complex initially formed, it tends to depreciate Li+
-ion diffusion and bears lower
reversible capacity; nevertheless, its cycle capacity and rate capability becoming superior in the
successive cycle. In the case of polymer D (di-substituted), the structure is originally having a
good surface attachment so that it could improve the ionic and electronic conductivity. Therefore, this cathode material increases the safety of battery without affecting discharge capacity. In this work, there are various modern characterization techniques such as
electrochemical, optical, thermal, spectroscopy and synchrotron radiation have been used
concurrently in order to optimize and design the best working conditions of STOBA as cathode
additives in LIBs.

Abstract............................................................................................................................................ I Acknowledgment........................................................................................................................VIII Lists of Figures........................................................................................................................... XIV Lists of Table........................................................................................................................... XVIII Chapter I Introduction......................................................................................................................1 1.1 Background of Study........................................................................................................ 1 1.2 Working Principle and Components of Lithium-Ion Batteries.........................................2 Chapter II Literature Review......................................................................................................... 12 2.1 Challenges in LiNi0.6Co0.2Mn0.2O2 Cathode Material..................................................... 12 2.2 Polymerization mechanism of STOBA...........................................................................13 2.2.1 Michael addition reactions.......................................................................................13 2.2.2 The Aza-Michael addition reactions........................................................................15 2.3 Safety Mechanism of STOBA........................................................................................ 18 2.4 Research Innovation........................................................................................................20 Chapter III Methodology............................................................................................................... 23 3.1 Research Design..............................................................................................................23 3.2 Materials..........................................................................................................................23 3.3 Equipment....................................................................................................................... 24 3.4 Experimental Procedure..................................................................................................24 3.4.1 Synthesis and characterization of polymer.............................................................. 24 3.4.2 Surface Coating and Kinetic Measurement............................................................. 25 3.4.3 Electrochemical Measurements............................................................................... 29 3.4.4 Thermal stability of the cathode.............................................................................. 33 3.4.5 Measurement of gas evolution and surface electronic structure..............................35 Chapter IV Effect of Reaction Temperature of BMI/BTA Polymers and Its Consequence on Safety of Li-Ion Battery.................................................................................................................37 4.1 Study of polymerization mechanism of BMI/BTA.........................................................37 4.2 Structural Elucidation of monomers and polymers.........................................................40 4.3 The Surface Kinetic Study of STOBA............................................................................41 4.4 The Surface Kinetic Study of STOBA-NMC................................................................. 44 4.5 Analysis of Electrochemical Performance......................................................................47 4.6 Thermal Stability of Cathode Materials..........................................................................50 4.7 Potential Dependence of Surface Electronic Structure................................................... 52 4.8 Temperature Dependence of Surface Electronic Structure.............................................56 4.9 Conclusion...................................................................................................................... 60 Chapter V Structural effect of BMI/BTA Polymer on thermal stability and electrochemical performance of Li-Ion Battery.......................................................................................................61 5.1 Synthesis of Polymers.....................................................................................................61 5.2 Structural Elucidation..................................................................................................... 64 5.3 The Surface Kinetic Analysis of polymers..................................................................... 65 5.4 The kinetic analysis of active material............................................................................69 5.5 Electrochemical performance measurement................................................................... 72 5.6 Analysis of Gas Evolution.............................................................................................. 74 5.7 Thermal stability study of cathode..................................................................................76 5.8 Analysis of Surface Electronic Structure........................................................................ 77 5.9 Temperature Dependence of Surface Electronic Structure.............................................80 5.10 Conclusion...................................................................................................................... 82 Chapter VI Study of Safety and Electrochemical Performance of Cathode Material Modified with Michael Addition Reaction Controlled Polymers for Li-ion Battery applications................61 6.1 Synthesis and Characterization of Polymers...................................................................83 6.2 The Surface Kinetic Analysis of Polymers..................................................................... 84 6.3 The Surface Kinetic Analysis of STOBA-NMC.............................................................85 6.4 Electrochemical performance of Battery........................................................................ 89 6.5 Analysis of Thermal stability of cathode........................................................................ 91 6.6 Analysis of Surface Electronic Structure........................................................................ 92 6.7 Temperature Dependence of Surface Electronic Structure.............................................95 6.8 Conclusion...................................................................................................................... 97 Chapter VII A Study of Safety and Electrochemical Performance of Cathode Material Modified with (Aza)-Michael Addition Reaction Controlled Polymers for Li-ion Battery..........................83 7.1 Synthesis and Characterization of Polymers...................................................................98 7.2 The Surface Kinetic Analysis of Polymers..................................................................... 99 7.3 The Kinetic Analysis of STOBA/NMC........................................................................ 101 7.4 Electrochemical Performance Measurement................................................................ 103 7.5 Analysis of thermal Stability of Cathode......................................................................106 7.6 Analysis of Electronic Structural of Pristine and Charged Electrode...........................107 7.7 Analysis of temperature effect on Surface Electronic Structure...................................110 7.8 Conclusion.................................................................................................................... 112 Chapter VIII Summary................................................................................................................ 113 References......................................................................................................................................98

1. Yoo, H. D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D., On the challenge of
developing advanced technologies for electrochemical energy storage and conversion. Materials Today 2014, 17 (3), 110-121. 2. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359. 3. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50
Years with Current Technologies. Science 2004, 305 (5686), 968-972. 4. Vikström, H.; Davidsson, S.; Höök, M., Lithium availability and future production outlooks. Applied Energy 2013, 110 (Supplement C), 252-266. 5. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials
today 2015, 18 (5), 252-264. 6. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451, 652. 7. Shu, Z. X.; McMillan, R. S.; Murray, J. J., Electrochemical Intercalation of Lithium into
Graphite. Journal of The Electrochemical Society 1993, 140 (4), 922-927. 8. Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M., Dependence of the
electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochimica Acta 1993, 38 (9), 1179-1191. 9. Winter, M.; Besenhard, J. O., Electrochemical lithiation of tin and tin-based intermetallics and
composites. Electrochimica Acta 1999, 45 (1), 31-50. 10. Mao, O.; Dunlap, R. A.; Dahn, J. R., Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode
Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System. Journal of The Electrochemical
Society 1999, 146 (2), 405-413. 11. Zhang, J.-j.; Xia, Y.-y., Co-Sn Alloys as Negative Electrode Materials for Rechargeable
Lithium Batteries. Journal of The Electrochemical Society 2006, 153 (8), A1466-A1471. 12. Wang, L.; Kitamura, S.; Obata, K.; Tanase, S.; Sakai, T., Multilayered Sn–Zn–Cu alloy
thin-film as negative electrodes for advanced lithium-ion batteries. Journal of Power Sources
2005, 141 (2), 286-292. 13. Mukaibo, H.; Momma, T.; Osaka, T., Changes of electro-deposited Sn–Ni alloy thin film for
lithium ion battery anodes during charge discharge cycling. Journal of Power Sources 2005, 146 (1), 457-463.
116 | P a g e
14. Kim, H.; Cho, J., Template Synthesis of Hollow Sb Nanoparticles as a High-Performance
Lithium Battery Anode Material. Chemistry of Materials 2008, 20 (5), 1679-1681. 15. Ohzuku, T.; Ueda, A., Why transition metal (di) oxides are the most attractive materials for
batteries. Solid State Ionics 1994, 69 (3), 201-211. 16. Chen, R.; Whittingham, M. S., Cathodic Behavior of Alkali Manganese Oxides from
Permanganate. Journal of The Electrochemical Society 1997, 144 (4), L64-L67. 17. Numata, K.; Yamanaka, S., Preparation and electrochemical properties of layered
lithium–cobalt–manganese oxides. Solid State Ionics 1999, 118 (1), 117-120. 18. Tsutomu, O.; Yoshinari, M., Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A
Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries. Chemistry Letters 2001, 30 (8), 744-745. 19. Jouanneau, S.; MacNeil, D. D.; Lu, Z.; Beattie, S. D.; Murphy, G.; Dahn, J. R., Morphology
and Safety of Li[NixCo1−2xMnx]O2 (0 ⩽ x ⩽ 1/2) Journal of The Electrochemical Society
2003, 150 (10), A1299-A1304. 20. Amalraj, F.; Talianker, M.; Markovsky, B.; Sharon, D.; Burlaka, L.; Shafir, G.; Zinigrad, E.;
Haik, O.; Aurbach, D.; Lampert, J.; Schulz-Dobrick, M.; Garsuch, A., Study of the
Lithium-Rich Integrated Compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co;
2:2:1) and Its Electrochemical Activity as Positive Electrode in Lithium Cells. Journal of The
Electrochemical Society 2013, 160 (2), A324-A337. 21. Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; Thackeray, M. M., Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes:
xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7). Chemistry of Materials 2008, 20 (19), 6095-6106. 22. Hashem, A. M. A.; Abdel-Ghany, A. E.; Eid, A. E.; Trottier, J.; Zaghib, K.; Mauger, A.;
Julien, C. M., Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for
lithium ion battery. Journal of Power Sources 2011, 196 (20), 8632-8637. 23. Martha, S. K.; Nanda, J.; Veith, G. M.; Dudney, N. J., Electrochemical and rate performance
study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Power
Sources 2012, 199 (Supplement C), 220-226.
117 | P a g e
24. Nayak, P. K.; Grinblat, J.; Levi, M.; Aurbach, D., Electrochemical and structural
characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode
materials for Li-ion batteries. Electrochimica Acta 2014, 137 (Supplement C), 546-556. 25. Li, S.; Fu, X.; Zhou, J.; Han, Y.; Qi, P.; Gao, X.; Feng, X.; Wang, B., An effective approach
to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an
MOF-derived coating. Journal of Materials Chemistry A 2016, 4 (16), 5823-5827. 26. Yang, H.; Zhuang, G. V.; Ross, P. N., Thermal stability of LiPF6 salt and Li-ion battery
electrolytes containing LiPF6. Journal of Power Sources 2006, 161 (1), 573-579. 27. Morita, M.; Ishikawa, M.; Matsuda, Y., Organic Electrolytes for Rechargeable Lithium Ion
Batteries. In Lithium Ion Batteries, Wiley-VCH Verlag GmbH: 2007; pp 156-180. 28. Aurbach, D.; Zaban, A.; Ein-Eli, Y.; Weissman, I.; Chusid, O.; Markovsky, B.; Levi, M.;
Levi, E.; Schechter, A.; Granot, E., Recent studies on the correlation between surface
chemistry, morphology, three-dimensional structures and performance of Li and Li-C
intercalation anodes in several important electrolyte systems. Journal of Power Sources 1997, 68 (1), 91-98. 29. Sloop, S. E.; Kerr, J. B.; Kinoshita, K., The role of Li-ion battery electrolyte reactivity in
performance decline and self-discharge. Journal of Power Sources 2003, 119-121
(Supplement C), 330-337. 30. Arakawa, M.; Yamaki, J.-I., The cathodic decomposition of propylene carbonate in lithium
batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 219
(1), 273-280. 31. F, J.; Hasan, M.; Patil, S.; P, D.; Clancy, T., Energy Storage: Battery Materials and
Architectures at the Nanoscale. 2014. 32. Johnson, M. B.; Wilkes, G. L., Microporous membranes of isotactic poly
(4‐methyl‐1‐pentene) from a melt‐extrusion process. I. Effects of resin variables and extrusion
conditions. Journal of applied polymer science 2002, 83 (10), 2095-2113. 33. Johnson, M. B.; Wilkes, G. L., Microporous membranes of polyoxymethylene from a
melt‐extrusion process:(II) Effects of thermal annealing and stretching on porosity. Journal of
applied polymer science 2002, 84 (9), 1762-1780. 34. Sogo, H., Separator for a battery using an organic electrolytic solution and method for
preparing the same. Journal of Power Sources 1998, 70 (2), 289-290.
118 | P a g e
35. Chandavasu, C.; Xanthos, M.; Sirkar, K. K.; Gogos, C., Preparation of microporous films
from immiscible blends via melt processing and stretching. Google Patents: 2004. 36. Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A., Advances in
manganese-oxide 'composite' electrodes for lithium-ion batteries. Journal of Materials
Chemistry 2005, 15 (23), 2257-2267. 37. Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A., Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal
of Materials Chemistry 2007, 17 (30), 3112-3125. 38. Cho, Y.; Oh, P.; Cho, J., A New Type of Protective Surface Layer for High-Capacity
Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer. Nano Letters 2013, 13 (3), 1145-1152. 39. Im, J.-H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S. M.;
Nazeeruddin, M. K.; Grätzel, M.; Park, N.-G., Nanowire Perovskite Solar Cell. Nano Letters
2015, 15 (3), 2120-2126. 40. Tao, T.; Chen, C.; Yao, Y.; Liang, B.; Lu, S.; Chen, Y., Enhanced electrochemical
performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceramics International 2017, 43 (17), 15173-15178. 41. Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J., Nickel‐rich layered
lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie
International Edition 2015, 54 (15), 4440-4457. 42. Kobayashi, H.; Shikano, M.; Koike, S.; Sakaebe, H.; Tatsumi, K., Investigation of positive
electrodes after cycle testing of high-power Li-ion battery cells: I. An approach to the power
fading mechanism using XANES. Journal of Power Sources 2007, 174 (2), 380-386. 43. Xiong, X.; Wang, Z.; Yan, G.; Guo, H.; Li, X., Role of V2O5 coating on LiNiO2-based
materials for lithium ion battery. Journal of Power Sources 2014, 245 (Supplement C), 183-193. 44. Wise, A. M.; Ban, C.; Weker, J. N.; Misra, S.; Cavanagh, A. S.; Wu, Z.; Li, Z.; Whittingham, M. S.; Xu, K.; George, S. M.; Toney, M. F., Effect of Al2O3 Coating on Stabilizing
LiNi0.4Mn0.4Co0.2O2 Cathodes. Chemistry of Materials 2015, 27 (17), 6146-6154.
119 | P a g e
45. Chen, C.; Tao, T.; Qi, W.; Zeng, H.; Wu, Y.; Liang, B.; Yao, Y.; Lu, S.; Chen, Y., High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as
cathodes. Journal of Alloys and Compounds 2017, 709 (Supplement C), 708-716. 46. Subburaj, T.; Jo, Y. N.; Prasanna, K.; Kim, K. J.; Lee, C. W., Titanium oxide nanofibers
decorated nickel-rich cathodes as high performance electrodes in lithium ion batteries. Journal
of Industrial and Engineering Chemistry 2017, 51 (Supplement C), 223-228. 47. Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R., Cycle life
improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion
batteries. Journal of Power Sources 2009, 188 (2), 564-569. 48. Chen, Y.; Zhang, Y.; Wang, F.; Wang, Z.; Zhang, Q., Improve the structure and
electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3
ultrasonic coating. Journal of Alloys and Compounds 2014, 611 (Supplement C), 135-141. 49. Chen, Y.; Zhang, Y.; Chen, B.; Wang, Z.; Lu, C., An approach to application for
LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. Journal of Power
Sources 2014, 256 (Supplement C), 20-27. 50. Yue, P.; Wang, Z.; Li, X.; Xiong, X.; Wang, J.; Wu, X.; Guo, H., The enhanced
electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature
fluorine substitution. Electrochimica Acta 2013, 95 (Supplement C), 112-118. 51. Yue, P.; Wang, Z.; Li, X.; Xiong, X.; Wang, J.; Wu, X.; Guo, H., The enhanced
electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature
fluorine substitution. Electrochimica Acta 2013, 95, 112-118. 52. Huang, Y.-H.; Park, K.-S.; Goodenough, J. B., Improving Lithium Batteries by Tethering
Carbon-Coated LiFePO4 to Polypyrrole. Journal of The Electrochemical Society 2006, 153
(12), A2282-A2286. 53. Ju, S. H.; Kang, I.-S.; Lee, Y.-S.; Shin, W.-K.; Kim, S.; Shin, K.; Kim, D.-W., Improvement
of the Cycling Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Active Materials by a
Dual-Conductive Polymer Coating. ACS Applied Materials & Interfaces 2014, 6 (4), 2546-2552. 54. Vaccaro, E.; Scola, D. A., New applications of polyaminoquinones. ChemInform 1999, 30
(41), no-no.
120 | P a g e
55. Van Beylen, M.; Bywater, S.; Smets, G.; Szwarc, M.; Worsfold, D. J., Developments in
anionic polymerization-a critical review. In Polysiloxane Copolymers/Anionic Polymerization, Springer: 1988; pp 87-143. 56. Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M., Preparation and
characterization of poly (ethylene glycol) vinyl sulfone. Bioconjugate chemistry 1996, 7 (3), 363-368. 57. Ferruti, P.; Bianchi, S.; Ranucci, E.; Chiellini, F.; Caruso, V., Novel poly
(amido‐amine)‐based hydrogels as scaffolds for tissue engineering. Macromolecular
bioscience 2005, 5 (7), 613-622. 58. Little, R. D.; Masjedizadeh, M. R.; Wallquist, O.; Mcloughlin, J. I., The Intramolecular M
ichael Reaction. Organic Reactions 2004, 47, 315-552. 59. Albertson, N. F., Alkylation with non-ketonic Mannich bases. Aminothiazoles and pyrrole. Journal of the American Chemical Society 1948, 70 (2), 669-670. 60. Schultz, A. G.; Yee, Y. K., Conjugate and direct addition of ester enolates to cyclohexenone. Selective control of reaction composition. The Journal of Organic Chemistry 1976, 41 (25), 4044-4045. 61. Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition reactions in
macromolecular design for emerging technologies. Progress in Polymer Science 2006, 31 (5), 487-531. 62. McElvain, S.; Rorig, K., Piperidine derivatives. XVIII. The condensation of aromatic
aldehydes with 1-methyl-4-piperidone. Journal of the American Chemical Society 1948, 70 (5), 1820-1825. 63. Wabnitz, T. C.; Yu, J. Q.; Spencer, J. B., Evidence That Protons Can Be the Active Catalysts
in Lewis Acid Mediated Hetero‐Michael Addition Reactions. Chemistry–A European Journal
2004, 10 (2), 484-493. 64. Dix, L. R.; Ebdon, J. R.; Flint, N. J.; Hodge, P.; O'Dell, R., Chain extension and crosslinking
of telechelic oligomers-I. Michael additions of bisamines to bismaleimides and bis(acetylene
ketone)s. European Polymer Journal 1995, 31 (7), 647-652. 65. Yu, F.-E.; Hsu, J.-M.; Pan, J.-P.; Wang, T.-H.; Chern, C.-S., Kinetics of Michael addition
polymerizations of n,n′-bismaleimide-4,4′-diphenylmethane with barbituric acid. Polymer
Engineering & Science 2013, 53 (1), 204-211.
121 | P a g e
66. Al-Najjar, H.; Barakat, A.; Al-Majid, A.; Mabkhot, Y.; Weber, M.; Ghabbour, H.; Fun, H.-K., A greener, efficient approach to Michael addition of barbituric acid to nitroalkene in
aqueous diethylamine medium. Molecules 2014, 19 (1), 1150-1162. 67. Yu, F.-E.; Jiang, S.-C.; Lee, H.-Y.; Ho, J.-H.; Hsu, J.-M.; Chern, C.-S., How do
hyperbranched polyimides form in polymerizations of
N,N’-bismaleimide-4,4′-diphenylmethane with barbituric acid? Journal of Polymer Research
2015, 22 (10), 187. 68. Pham, Q.-T.; Yu, F.-E.; Hsu, J.-M.; Pan, J.-P.; Wang, T.-H.; Chern, C.-S., Polymerization
kinetics of reactive N,N′-bismaleimide-4,4′-diphenylmethane/barbituric acid based microgel
particles. Thermochimica Acta 2014, 597 (Supplement C), 1-7. 69. Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T., Safety mechanisms in lithium-ion
batteries. Journal of Power Sources 2006, 155 (2), 401-414. 70. Wei, T.; Zeng, R.; Sun, Y.; Huang, Y.; Huang, K., A reversible and stable flake-like LiCoO2
cathode for lithium ion batteries. Chem Commun (Camb) 2014, 50 (16), 1962-4. 71. Kim, S.-H.; Choi, K.-H.; Cho, S.-J.; Kil, E.-H.; Lee, S.-Y., Mechanically compliant and
lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion
batteries. Journal of Materials Chemistry A 2013, 1 (16), 4949. 72. Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C., Thermal runaway caused fire and
explosion of lithium ion battery. Journal of Power Sources 2012, 208 (Supplement C), 210-224. 73. Yang, C. R.; Pan, J. P.; Chen, C. A.; Hsu, J. M., Battery electrode paste composition
containing modified maleimides. Google Patents: 2012. 74. Lin, C.-C.; Wu, H.-C.; Pan, J.-P.; Su, C.-Y.; Wang, T.-H.; Sheu, H.-S.; Wu, N.-L., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer
coated on cathode. Electrochimica Acta 2013, 101 (Supplement C), 11-17. 75. Liu, H.-M.; Saikia, D.; Wu, H.-C.; Su, C.-Y.; Wang, T.-H.; Li, Y.-H.; Pan, J.-P.; Kao, H.-M., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the
safety mechanism of lithium-ion batteries. RSC Adv. 2014, 4 (99), 56147-56155. 76. Baginska, M.; Blaiszik, B. J.; Merriman, R. J.; Sottos, N. R.; Moore, J. S.; White, S. R., Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres. Advanced Energy Materials 2012, 2 (5), 583-590.
122 | P a g e
77. Escobar-Hernandez, H. U.; Gustafson, R. M.; Papadaki, M. I.; Sachdeva, S.; Mannan, M. S., Thermal Runaway in Lithium-Ion Batteries: Incidents, Kinetics of the Runaway and
Assessment of Factors Affecting Its Initiation. Journal of The Electrochemical Society 2016, 163 (13), A2691-A2701. 78. Lee, H.; Kim, M. G.; Cho, J., Olivine LiCoPO4 phase grown LiCoO2 cathode material for
high density Li batteries. Electrochemistry Communications 2007, 9 (1), 149-154. 79. Wu, F.; Wang, M.; Su, Y.; Chen, S.; Xu, B., Effect of TiO2-coating on the electrochemical
performances of LiCo1/3Ni1/3Mn1/3O2. Journal of Power Sources 2009, 191 (2), 628-632. 80. Park, B. C.; Kim, H. B.; Myung, S. T.; Amine, K.; Belharouak, I.; Lee, S. M.; Sun, Y. K., Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2
cathode materials on high voltage region. Journal of Power Sources 2008, 178 (2), 826-831. 81. Liu, H.-M.; Saikia, D.; Wu, H.-C.; Su, C.-Y.; Wang, T.-H.; Li, Y.-H.; Pan, J.-P.; Kao, H.-M., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the
safety mechanism of lithium-ion batteries. RSC Advances 2014, 4 (99), 56147-56155. 82. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion
battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988. 83. Lin, C.-C.; Wu, H.-C.; Pan, J.-P.; Su, C.-Y.; Wang, T.-H.; Sheu, H.-S.; Wu, N.-L., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer
coated on cathode. Electrochimica Acta 2013, 101, 11-17. 84. Wang, F.-M.; Wu, H.-C.; Cheng, C.-S.; Huang, C.-L.; Yang, C.-R., High ionic transfer of a
hyperbranched-network gel copolymer electrolyte for potential electric vehicle (EV)
application. Electrochimica Acta 2009, 54 (14), 3788-3793. 85. Wang, F.-M.; Lo, S.-C.; Cheng, C.-S.; Chen, J.-H.; Hwang, B.-J.; Wu, H.-C., Self-polymerized membrane derivative of branched additive for internal short protection of
high safety lithium ion battery. Journal of membrane science 2011, 368 (1-2), 165-170. 86. Pham, Q.-T.; Hsu, J.-M.; Shao, W.-J.; Zhan, Y.-X.; Wang, F.-M.; Chern, C.-S., Mechanisms
and kinetics of non-isothermal polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane
with 1, 3-dimethylbarbituric acid. Thermochimica Acta 2017, 658, 31-37. 87. Pham, Q.-T.; Hsu, J.-M.; Shao, W.-J.; Wang, F.-M.; Chern, C.-S., Mechanisms and kinetics
of isothermal polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane with 5,
123 | P a g e
5-dimethylbarbituric acid in the presence of triphenylphosphine. Thermochimica Acta 2017, 655, 234-241. 88. Larson, R. G.; Rehg, T. J., Spin Coating. In Liquid Film Coating: Scientific principles and
their technological implications, Kistler, S. F.; Schweizer, P. M., Eds. Springer Netherlands:
Dordrecht, 1997; pp 709-734. 89. Pradanawati, S. A.; Wang, F.-M.; Su, C.-H., Using electrochemical surface plasmon
resonance for in-situ kinetic investigations of solid electrolyte interphase formation in lithium
ion battery. Journal of Power Sources 2016, 330, 127-131. 90. Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z., Surface plasmon resonance for characterization
of large-area atomic-layer graphene film. Optica 2016, 3 (2), 151-158. 91. K. Nagata, H. H., Real-Time Analysis of Biomolecular Interactions, Applications of
BIACORE. Springer-Verlag: Tokyo, 2000. 92. Takarada, A.; Suzuki, T.; Kanda, K.; Niibe, M.; Nakano, M.; Ohtake, N.; Akasaka, H., Structural dependence of corrosion resistance of amorphous carbon films against nitric acid. Diamond and Related Materials 2015, 51, 49-54. 93. Morton, T. A.; Myszka, D. G.; Chaiken, I. M., Interpreting complex binding kinetics from
optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and
numerical integration. Analytical biochemistry 1995, 227 (1), 176-185. 94. Myszka, D. G.; Morton, T. A.; Doyle, M. L.; Chaiken, I. M., Kinetic analysis of a protein
antigen-antibody interaction limited by mass transport on an optical biosensor. Biophysical
chemistry 1997, 64 (1-3), 127-137. 95. Yu, F.-E.; Hsu, J.-M.; Pan, J.-P.; Wang, T.-H.; Chiang, Y.-C.; Lin, W.; Jiang, J.-C.; Chern, C.-S., Effect of solvent proton affinity on the kinetics of michael addition polymerization
ofn,n′-bismaleimide-4,4′-diphenylmethane with barbituric acid. Polymer Engineering &
Science 2014, 54 (3), 559-568. 96. Renault, J. P.; Bernard, A.; Bietsch, A.; Michel, B.; Bosshard, H. R.; Delamarche, E.;
Kreiter, M.; Hecht, B.; Wild, U. P., Fabricating Arrays of Single Protein Molecules on Glass
Using Microcontact Printing. The Journal of Physical Chemistry B 2003, 107 (3), 703-711. 97. Kurbanoglu, S.; Uslu, B.; Ozkan, S. A., Chapter 28 - Carbon-based nanostructures for
electrochemical analysis of oral medicines A2 - Andronescu, Ecaterina. In Nanostructures for
Oral Medicine, Grumezescu, A. M., Ed. Elsevier: 2017; pp 885-938.
124 | P a g e
98. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2017. 99. Freire, E., Differential Scanning Calorimetry. In Protein Stability and Folding: Theory and
Practice, Shirley, B. A., Ed. Humana Press: Totowa, NJ, 1995; pp 191-218. 100. Kodre, K.; Attarde, S.; Yendhe, P.; Patil, R.; Barge, V., Research and Reviews: Journal
of Pharmaceutical Analysis. 101. Jeyabalan, G.; Nyola, N., Research and Reviews: Journal of Pharmaceutical Analysis. 102. Tian, C.; Nordlund, D.; Xin, H. L.; Xu, Y.; Liu, Y.; Sokaras, D.; Lin, F.; Doeff, M. M., Depth-dependent redox behavior of LiNi0. 6Mn0. 2Co0. 2O2. Journal of The Electrochemical
Society 2018, 165 (3), A696-A704. 103. Li, J.; Downie, L. E.; Ma, L.; Qiu, W.; Dahn, J., Study of the failure mechanisms of
LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. Journal of The Electrochemical
Society 2015, 162 (7), A1401-A1408. 104. Streich, D.; Erk, C.; Gueғguen, A.; Muࡇller, P.; Chesneau, F.-F.; Berg, E. J., Operando
monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni–Co–Mn oxides. The Journal of Physical Chemistry C 2017, 121 (25), 13481-13486. 105. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus
electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and
Conductive Carbon. The journal of physical chemistry letters 2017, 8 (19), 4820-4825. 106. Renfrew, S. E.; McCloskey, B. D., Quantification of surface oxygen depletion and solid
carbonate evolution on the first cycle of LiNi0. 6Mn0. 2Co0. 2O2 electrodes. ACS Applied
Energy Materials 2019. 107. Alemu, T.; Wang, F.-M., In situ electrochemical synchrotron radiation for Li‐ion
batteries. Journal of synchrotron radiation 2018, 25 (1), 151-165. 108. Song, J.; Ryou, M.-H.; Son, B.; Lee, J.-N.; Lee, D. J.; Lee, Y. M.; Choi, J. W.; Park, J.-K., Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium
ion batteries. Electrochimica acta 2012, 85, 524-530. 109. Yoon, W. S.; Haas, O.; Muhammad, S.; Kim, H.; Lee, W.; Kim, D.; Fischer, D. A.; Jaye, C.; Yang, X. Q.; Balasubramanian, M.; Nam, K. W., In situ soft XAS study on nickel-based
layered cathode material at elevated temperatures: a novel approach to study thermal stability. Sci Rep 2014, 4, 6827.
125 | P a g e
110. Su, H. L.; Hsu, J. M.; Pan, J. P.; Wang, T. H.; Yu, F. E.; Chern, C. S., Kinetic and
structural studies of the polymerization of N, N′‐bismaleimide‐4, 4′‐diphenylmethane with
barbituric acid. Polymer Engineering & Science 2011, 51 (6), 1188-1197. 111. Yu, F. E.; Hsu, J. M.; Pan, J. P.; Wang, T. H.; Chern, C. S., Kinetics of Michael addition
polymerizations of n, n′‐bismaleimide‐4, 4′‐diphenylmethane with barbituric acid. Polymer
Engineering & Science 2013, 53 (1), 204-211. 112. Yu, F.-E.; Jiang, S.-C.; Lee, H.-Y.; Ho, J.-H.; Hsu, J.-M.; Chern, C.-S., How do
hyperbranched polyimides form in polymerizations of N, N’-bismaleimide-4, 4′-diphenylmethane with barbituric acid? Journal of Polymer Research 2015, 22 (10), 187. 113. Mahmudov, K. T.; Kopylovich, M. N.; Maharramov, A. M.; Kurbanova, M. M.;
Gurbanov, A. V.; Pombeiro, A. J., Barbituric acids as a useful tool for the construction of
coordination and supramolecular compounds. Coordination Chemistry Reviews 2014, 265, 1-37. 114. Yu, F.-E.; Jiang, S.-C.; Lee, H.-Y.; Ho, J.-H.; Hsu, J.-M.; Chern, C.-S., How do
hyperbranched polyimides form in polymerizations of N, N’-bismaleimide-4, 4′-diphenylmethane with barbituric acid? Journal of Polymer Research 2015, 22 (10), 1-8. 115. Stuart, B. Infrared spectroscopy: fundamentals and applications. JohnWiley & Sons, Ltd. ISBNs: 0-470-85427-8 (HB); 0-470-85428-6 (PB): 2004. 116. Barnes, A.; Le Gall, L.; Lauransan, J., Vibrational spectra of barbituric acid derivatives
in low-temperature matrices: Part 3. 5, 5-Diethyl barbituric acid (barbital). Journal of
Molecular Structure 1979, 56, 29-39. 117. Pan, J. P.; Shiau, G. Y.; Lin, S. S.; Chen, K. M., Effect of barbituric acid on the
self‐polymerization reaction of bismaleimides. Journal of applied polymer science 1992, 45
(1), 103-109. 118. Liang, H.; Miranto, H.; Granqvist, N.; Sadowski, J. W.; Viitala, T.; Wang, B.;
Yliperttula, M., Surface plasmon resonance instrument as a refractometer for liquids and
ultrathin films. Sensors and Actuators B: Chemical 2010, 149 (1), 212-220. 119. Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag Berlin An: 2013. 120. Lukosz, W., Integrated-optical and surface-plasmon sensors for direct affinity sensing. Part II: Anisotropy of adsorbed or bound protein adlayers. Biosensors and Bioelectronics 1997, 12 (3), 175-184.
126 | P a g e
121. Liedberg, B.; Lundström, I.; Stenberg, E., Principles of biosensing with an extended coupling
matrix and surface plasmon resonance. Sensors and Actuators B: Chemical 1993, 11 (1), 63-72. 122. Sambles, J.; Bradbery, G.; Yang, F., Optical excitation of surface plasmons: an
introduction. Contemporary physics 1991, 32 (3), 173-183. 123. Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S., Quantitative
interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 1998, 14 (19), 5636-5648. 124. Middleton, J.; Hoffman, J.; Burks, B.; Predecki, P.; Kumosa, M., Aging of a polymer
core composite conductor: Mechanical properties and residual stresses. Composites Part A:
Applied Science and Manufacturing 2015, 69, 159-167. 125. Struik, L. C. E., Physical aging in amorphous polymers and other materials. S.l.: Gerbon
to Capella A/d Ijssel 1977, 10. 126. Turhan-Sayan, G., Temperature effects on surface plasmon resonance: design
considerations for an optical temperature sensor. Journal of Lightwave Technology 2003, 21 (3), 805. 127. Chiang, H.; Chen, C.-W.; Wu, J.; Li, H.; Lin, T.; Sánchez, E.; Leung, P., Effects of
temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid
Films 2007, 515 (17), 6953-6961. 128. Chang, L. S.; Wu, H. C.; Lin, Y. C.; Su, C. Y.; Pan, J. P., XPS study on the STOBA
coverage on Li(Ni0.4Co0.2Mn0.4)O2 oxide in pristine electrodes. Surface and Interface Analysis
2017, 49 (10), 1017-1022. 129. Marcel, R.; Franziska, R.; Varsha, K.; Petko, C.; Ivelina, Z.; Holger, D., Characterisation of a water-oxidizing Co-film by XAFS. Journal of Physics: Conference
Series 2009, 190 (1), 012167. 130. Wang, F.-M.; Lo, S.-C.; Cheng, C.-S.; Chen, J.-H.; Hwang, B.-J.; Wu, H.-C., Self-polymerized membrane derivative of branched additive for internal short protection of
high safety lithium ion battery. Journal of Membrane Science 2011, 368 (1), 165-170. 131. Li, Y.-H.; Lee, M.-L.; Wang, F.-M.; Yang, C.-R.; Chu, P. P.; Yau, S.-L.; Pan, J.-P., Electrochemical performance and safety features of high-safety lithium ion battery using novel
branched additive for internal short protection. Applied Surface Science 2012, 261, 306-311.
127 | P a g e
132. Chen, Y.; Zhang, Y.; Chen, B.; Wang, Z.; Lu, C., An approach to application for
LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. Journal of Power
Sources 2014, 256, 20-27. 133. Guo, R.; Shi, P.; Cheng, X.; Sun, L., Effect of ZnO modification on the performance of
LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochimica Acta 2009, 54 (24), 5796-5803. 134. Yoon, W.-S.; Balasubramanian, M.; Chung, K. Y.; Yang, X.-Q.; McBreen, J.; Grey, C. P.; Fischer, D. A., Investigation of the Charge Compensation Mechanism on the
Electrochemically Li-Ion Deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 Electrode System by
Combination of Soft and Hard X-ray Absorption Spectroscopy. Journal of the American
Chemical Society 2005, 127 (49), 17479-17487. 135. Tao, T.; Chen, C.; Yao, Y.; Liang, B.; Lu, S.; Chen, Y., Enhanced electrochemical
performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceramics International 2017, 43 (17), 15173-15178. 136. Yu, Y.; Wang, J.; Zhang, P.; Zhao, J., A detailed thermal study of usual
LiNi0.5Co0.2Mn0.3O2, LiMn2O4 and LiFePO4 cathode materials for lithium ion batteries. Journal of Energy Storage 2017, 12, 37-44. 137. Chen, Z.; Liu, C.; Sun, G.; Kong, X.; Lai, S.; Li, J.; Zhou, R.; Wang, J.; Zhao, J., Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored
LiNi0.5Co0.2Mn0.3O2 Cathode Materials. ACS applied materials & interfaces 2018, 10 (30), 25454-25464. 138. Ota, H.; Kominato, A.; Chun, W.-J.; Yasukawa, E.; Kasuya, S., Effect of cyclic
phosphate additive in non-flammable electrolyte. Journal of power sources 2003, 119, 393-398. 139. Kobayashi, K., HAXPES Applications to Advanced Materials. In Hard X-ray
Photoelectron Spectroscopy (HAXPES), Springer: 2016; pp 467-531. 140. Jordan‐Sweet, J.; Kovac, C.; Goldberg, M.; Morar, J., Polymer/metal interfaces studied
by carbon near‐edge x‐ray absorption fine structure spectroscopy. The Journal of chemical
physics 1988, 89 (4), 2482-2489. 141. Son, I. H.; Park, J. H.; Kwon, S.; Mun, J.; Choi, J. W., Self-terminated artificial SEI
layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition. Chemistry of Materials 2015, 27 (21), 7370-7379.
128 | P a g e
142. Ye, Y.; Kawase, A.; Song, M.-K.; Feng, B.; Liu, Y.-S.; Marcus, M. A.; Feng, J.; Cairns, E. J.; Guo, J.; Zhu, J., X-ray absorption spectroscopy characterization of a Li/S cell. Nanomaterials 2016, 6 (1), 14. 143. Latham, K. G.; Simone, M. I.; Dose, W. M.; Allen, J. A.; Donne, S. W., Synchrotron
based NEXAFS study on nitrogen doped hydrothermal carbon: Insights into surface
functionalities and formation mechanisms. Carbon 2017, 114, 566-578. 144. Seo, H.; Lee, S.; Ju, B.; Lucovsky, G.; Lüning, J. In XAS Studies of Chemical Bonding
of Nitrogen and Oxygen Atoms in Ti/Zr/Hf High‐K Gate Dielectrics, AIP Conference
Proceedings, AIP: 2007; pp 487-489. 145. Alemu, T.; Pradanawati, S. A.; Chang, S.-C.; Lin, P.-L.; Kuo, Y.-L.; Pham, Q.-T.; Su, C.-H.; Wang, F.-M., In operando measurements of kinetics of solid electrolyte interphase
formation in lithium-ion batteries. Journal of Power Sources 2018, 400, 426-433. 146. Lin, H.-J.; Chin, Y.; Hu, Z.; Shu, G.; Chou, F.; Ohta, H.; Yoshimura, K.; Hébert, S.;
Maignan, A.; Tanaka, A., Local orbital occupation and energy levels of Co in NaxCoO2: A soft
x-ray absorption study. Physical Review B 2010, 81 (11), 115138. 147. Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J., A New Coating Method for
Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface
Treatment of Primary Particles. Nano Letters 2015, 15 (3), 2111-2119. 148. Hou, P.; Li, F.; Sun, Y.; Pan, M.; Wang, X.; Shao, M.; Xu, X., Improving Li+ Kinetics
and Structural Stability of Nickel-Rich Layered Cathodes by Heterogeneous Inactive-Al3+ Doping. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 5653-5661. 149. Stewart, B., Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons, Ltd.: Sussex: 2004. 150. Ju, S. H.; Kang, I.-S.; Lee, Y.-S.; Shin, W.-K.; Kim, S.; Shin, K.; Kim, D.-W., Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a
dual-conductive polymer coating. ACS applied materials & interfaces 2014, 6 (4), 2546-2552. 151. Wang, F.-M.; Pradanawati, S. A.; Yeh, N.-H.; Chang, S.-C.; Yang, Y.-T.; Huang, S.-H.;
Lin, P.-L.; Lee, J.-F.; Sheu, H.-S.; Lu, M.-L., Robust Benzimidazole-Based Electrolyte
Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion
Batteries. Chemistry of Materials 2017, 29 (13), 5537-5549.

無法下載圖示 全文公開日期 2021/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE