簡易檢索 / 詳目顯示

研究生: 陳冠炷
Guan-Jhu Chen
論文名稱: 以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現
Design and Implementation of Li-ion Battery Charger Using State-of-Charge Estimation with Fuzzy Temperature Control
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅有綱
Yu-Kang Lo
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 120
中文關鍵詞: 鋰離子電池充電器模糊控制剩餘容量
外文關鍵詞: lithium ion battery charger, fuzzy logic control, state of charge
相關次數: 點閱:365下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鋰離子電池已被大量使用在消費性產品的能量儲存上,例如:手機、筆記型電腦以及其他攜帶式產品,為了讓鋰離子電池發揮最大的效能,需要一個高充電效率的高品質充電器。
    本文提出一個新型的鋰離子電池充電器。首先,根據剩餘容量的資訊來調整其充電電流,為了要加以改善充電效率,將電池溫差及電池溫差的變化率加入模糊控制器運算,進而微調充電電流。本文硬體及韌體架構部分將於文中詳細介紹,功率級電路採用同步整流降壓轉換器來實現,以及使用Microchip微處理器實現數位補償器、數位濾波器及剩餘容量充電法,並於個人電腦上使用LabVIEW人機介面實現模糊控制器。根據實驗結果,本文提出的充電法可以改善充電器的效能,並提升充電效率,相較於傳統CC-CV充電法,平均溫差下降31.24%,也能維持相近的充電時間。


    Nowadays, lithium-ion batteries are playing a substantial role in energy storage solutions for modern-day consumer products such as mobile phones, laptop computers and other portable devices. In order to maximize the performance of lithium-ion batteries, an advanced charger is required. The desired functionalities of a high quality charger include high charging efficiency.
    In this thesis, a novel Li-ion battery charger is proposed; the proposed charger first takes the state of charge (SOC) information into account and adjusts the charging current accordingly. In order to further improve the charging efficiency, a fuzzy-logic-control-based (FLC-based) technique is also employed. The proposed FLC takes the temperature rise and the gradient of temperature rise of battery into account, and fine-tune the charging current accordingly. The hardware and firmware parts of the proposed system are described in detail. In this thesis, the power stage is implemented using the synchronous-rectified buck converter. The digital compensator, digital filter and the SOC adaptive algorithm is implemented using the dsPIC digital signal controller from Microchip Corp; while the fuzzy logic controller is realized using the LabVIEW on a personal computer. In addition to the hardware, a graphical user interface is also presented in this thesis.
    According to the experimental results, the charging efficiency of the proposed system can be increased and the performance of the proposed charger can be improved. Comparing to conventional CC-CV method, the proposed charging technique can reduce the average temperature rise for 31.24 % while maintaining similar charging time.

    目錄 摘要I AbstractII 誌謝III 目錄IV 圖目錄VI 表目錄X 第一章 緒論1 1.1 研究背景1 1.2 文獻回顧2 1.3 研究動機及目的3 1.4 論文大綱4 第二章 二次電池與二次電池充電技術介紹5 2.1 二次電池種類及化學特性5 2.1.1 鉛酸電池5 2.1.2 鎳鎘電池6 2.1.3 鎳氫電池7 2.1.4 鋰離子電池7 2.2 二次電池特性比較9 2.3電池專有相關名詞介紹10 2.4 二次電池充電技術介紹12 2.4.1定電壓(Constant Voltage,CV)充電法13 2.4.2 定電流(Constant Current,CC)充電法13 2.4.3 定電流-定電壓(CC-CV)充電法14 2.4.4定電流-定電壓衍生型充電法15 2.4.5 多階段電流充電法(Multi-stage current charging algorithm,MSCC)20 2.4.6 脈衝充電法(Pulse Charge)22 第三章 剩餘容量充電法介紹25 3.1剩餘容量充電法介紹25 3.2剩餘容量充電法之實驗流程25 3.2.1 電池篩選25 3.2.2 剩餘容量充放電測試26 3.2.3 建立比例關係表31 3.3 剩餘容量充電法充電電流擬合方法32 第四章 電池充電機硬體架構35 4.1 降壓式直流-直流轉換器簡介36 4.2 同步降壓式轉換器工作原理38 4.3 設計實例40 4.4 電池容量估測晶片 TI BQ20Z45 簡介42 4.5 TI BQ20Z45阻抗追蹤(Impedance Track)電池容量估測技術介紹44 4.6 通訊介面48 4.6.1通用非同步收發傳輸器(UART)通訊介面48 4.6.2內部整合電路(I2C)通訊介面48 第五章 電池充電機韌體架構50 5.1 dsPIC33FJ16GS502簡介51 5.2 程式設計流程介紹52 5.3 數位濾波器(Digital Filter)53 5.3.1 濾波器簡介53 5.3.2 有限與無限脈衝響應濾波器56 5.3.3 有限脈衝響應濾波器設計57 5.4 數位 PID 控制器60 5.4.1數位PID 控制器動作原理60 5.4.2 數位PID 控制器設計62 5.5 系統通訊介面65 5.5.1 通用非同步收發傳輸器(UART)66 5.5.2 內部整合電路(I2C)通訊67 5.6 模糊控制器69 5.6.1 模糊理論簡介69 5.6.2 模糊控制器簡介70 5.6.3 模糊控制器設計71 5.6.4 模糊控制器程式流程77 5.7監控介面79 5.7.1 LabVIEW簡介79 5.7.2 監控介面程式80 第六章 實驗結果及討論83 6.1 同步整流降壓轉換器實體電路及波形量測83 6.2 剩餘容量充電法實驗結果88 6.3充電法實驗波形比較93 參考文獻101

    [1]羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
    [2]陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [3]柯俊偉,「智慧型電池模組之可程控充電機設計」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [4]李易玹,「鋰離子電池新型充電方法之研究」,台灣科技大學電機工程碩士論文,民國一零二年七月。
    [5]孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
    [6]屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [7]M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage and current for lead-acid and lithium-ion batteries,” IEEE Trans. on Industrial Electronics, vol. 54, no. 5, pp.2550-2557, Oct. 2007.
    [8]陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
    [9]李孜賾,「以模糊控制為基礎之五階段鋰電池充電機」,台灣科技大學電機工程研究所論文,民國九十八年六月。
    [10]魏若芳,「串聯鋰離子電池組模組化電池管理系統研製」,台灣科技大學電機工程研究所論文,民國一百年七月。
    [11]H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid charger for lead-acid batteries with energy recovery,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
    [12]J.B. Wang, and C.Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
    [13]C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
    [14]V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244–254, Jun. 2005.
    [15]M. James, J. Grummett, and M. Rowan et al, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
    [16]Weixiang Shen, Thanh Tu Vo, and Ajay Kapoor, “Charging Algorithms of Lithium-Ion Batteries: an Overview,” 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1567 – 1572, July 2012.
    [17]K.M. Tsang, W.L. Chan, “Current sensorless quick charger for lithiumion batteries,” Energy Conversion and Management 52, 2011, pp.1593-1595.
    [18]P. H. L. Notten, J. H. G. Op het Veld, J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept”, Journal of power Source, vol. 145, no. 1, pp. 89-94, Feb 2005.
    [19]Guan-Chyun Hsieh and Liang-Rui Chen, Kuo-Sun Huang, “ Fuzzycontrolled Lithium-Ion Battery Charge System with Active State of Charge Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, June 2001.
    [20]Liang-Rui Chen, Roy Chaoming Hsu, Chuan-Sheng Liu, “A Design of A Grey-Predicted Lithium-Ion Battery Charge System,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 6, June 2004.
    [21]Liang-Rui Chen, “PLL-Based Battery Charge Circuit Topoloty,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, June 2001.
    [22]L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, ”Current pumped battery charger,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2482- 2488, Jun 2008.
    [23]Lan-Ron Dung, and Jieh-Hwang Yen, ” ILP-Based Algorithm for Lithium-Ion Battery Charging Profile,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 2286 – 2291 , July 2010.
    [24]J.W. Huang, Y.H. Liu, S.C. Wang, Z.Z. Yang, “Fuzzy-Control-Based Five-Step Lithium-Ion Battery Charger,” IEEE International Conference on Power Electronics and Drive Systems (PEDS), 2009.
    [25]Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 26, no. 2, pp. 654–661, 2011.
    [26]Y. H. Liu and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using Taguchi approach,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
    [27]Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for Li-ion batteries using ant colony system algorithm,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [28]P.E. De Jongh, P.H.L. Notten, “Effect of Current Pulses on Lithium Intercalation Batteries,” Solid State Ionics 148, 2002, pp. 259-268.
    [29]Jun Li, Edward Murphy, Jack Winnick, Paul A. Kohl, “The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries,” Journal of Power Sources, 102 (2001), pp. 302-309
    [30]L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique”, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.398-405, Feb 2007.
    [31]L. R. Chen, “A design of Duty-Varied Voltage Pulse Charger for Improving Lithium-Ion Battery-Charging Response”, IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.480-487, Feb. 2009.
    [32]B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes”, Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39, 2005.
    [33]B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current”, Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542, 2006.
    [34]王順忠,「電力電子學」,臺灣東華書局股份有限公司,2001年。
    [35]R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2rd Edition, 2000.
    [36]H. K. Ji, and H. J. Kim, “Active Clamp Forward Converter with MOSFET Synchronous Rectification,” in Proc. IEEE PESC’94, vol. 2, pp. 895-901, 1994.
    [37] E. Sakai, and K. Harada, “Synchronous Rectifier for Low Voltage Switching Converter,” in Proc. IEEE INTELEC’95, pp. 471-475, 1995.
    [38]曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,2009年。
    [39]林冠宇,「獨立型太陽能發電系統用準Z源換流器之設計與研製」,台灣科技大學電機工程研究所論文,民國一百零二年七月。
    [40]蔡俊嘉,「非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究」,台灣科技大學電機工程研究所論文,民國一百零二年一月。
    [41]邱奕勳,「電池充電用數位控制LLC諧振轉換器設計與研製」,台灣科技大學電機工程研究所論文,民國一百零一年七月。

    無法下載圖示 全文公開日期 2019/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE