簡易檢索 / 詳目顯示

研究生: 李明峰
Ming-Fong Li
論文名稱: 嵌入式正交分頻多工收發機系統整合
System Integration for Embedded OFDM Transceiver
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 林敬舜
ChingShun Lin
高典良
none
何政祐
none
葉濰銘
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 49
中文關鍵詞: Warp BoardAD9361802.11 OFDM系統整合
外文關鍵詞: Warp Board, AD9361, 802.11 OFDM, system Integration
相關次數: 點閱:388下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對Warp Board 與 AD9361 天線模組的系統整合,由於原有硬體電路與天線模組受限於2.4Ghz 與5Ghz,為了能夠實現在不同頻段上面進行通訊,因此我們選用了AD9361這塊天線模組,它能通訊的頻段從70Mhz到6Ghz都可以自行調整,且相當便利,可以自行修改的參數也相當多,讓使用者可以客製化來設計自行的系統整合,而原有的硬體電路設計是基於802.11 OFDM系統,在電路設計上並沒有太大的變化,我們只需要針對AD9361 RF模組上的特性,然後對我們的802.11 OFDM系統中的Transmit & Receive & DCF 這三塊硬體電路做整合,計算出AD9361 RF天線模組的線路delay與外部CLK要如何與內部IP的系統做同步的調整,並且如何透過SPI 控制AD9361的參數轉換與各項RF參數,如此我們就可以將原有的天線模組整個調換成AD9361 RF,並且實現在各個頻段上面傳送802.11 frame,本論文以系統整合為目標,採用Xilinx tool 設計我們的電路,包含硬體設計部分採用Xilinx XPS ,在軟件部分採用Xilinx SDK,
,最後會實現於FPGA電路板上呈現。


The thesis proposes the Warp Board and AD9361 RF antenna with module Integration for system, since the original hardware circuit and antenna module is limited to 2.4GHz and 5GHz, therefore we chose this AD9361 antenna module, which can communicate with the band from 70Mhz to 6Ghz are self-adjusting , greatly convenient, and can modify a lot of parameters, so that users can design their own custom system to integrate, and the original hardware circuit design is based on 802.11 OFDM system, which has not changed much, we only need for the characteristics of AD9361 RF module, afterwards these three hardware circuits: Transmit & Receive & DCF are integrated on our 802.11 OFDM system ,Moreover calculate the delay of circuit for AD9361 RF antenna module and external CLK that how to synchronize for internal IP systems , as well as how to control the parameters through SPI to transform with the AD9361 RF parameters, so that we can let original antenna module replace by the entirely AD9361 RF module, and completely transfer 802.11 frame on each frequency band. The study implement system integration as the goal, and design circuit with Xilinx tool, comprising part of the hardware design using Xilinx XPS and the software part adopt Xilinx SDK. Eventually, it will be implemented a FPGA board.

圖目錄 vi 表目錄 ix 第一章 緒論 1 第二章 OFDM系統架構 3 2.1 正交分頻多工系統 3 2.1.1 OFDM的調變(Modulation) 3 2.1.2 OFDM的正交姓(Orthogonality) 4 2.1.3 OFDM的解調變(Demodulation) 5 2.1.4 OFDM調變/解調變的數位化 6 2.1.5 護衛區間(Guard interval)與循環字首(Cyclic Prefix) 7 2.2 DCF硬體電路架構 8 2.3 OFDM Transmit hardware IP 9 2.4 OFDM Receive hardware IP 11 第三章 實作平台 13 3.1 Warp v3 FPGA開發板 13 3.2 模擬工具與平台 14 3.2.1 產生Netlist方式 15 3.2.2 XPS平台介紹 16 3.2.3 SDK平台介紹 17 第四章 802.11a/g firmware protocol 20 4.1 802.11無線網路基礎架構 20 4.2 802.11無線網路訊框架構 21 4.3 802.11無線網路連線架構 23 4.4 被動掃描與主動掃描 24 4.5 802.11 MAC layer ( DCF ) 25 4.6 802.11 RTS/CTS隱藏節點問題 27 第五章 AD9361介紹與系統設計 28 5.1 AD9361整體介紹 28 5.2 AD9361 Auto Gain Control 29 5.2.1 Slow AGC 30 5.2.2 Fast AGC 31 5.3 AD9361 driver set 35 5.4 時序設計分析 36 5.4.1 Tx path 36 5.4.2 Rx path 37 5.4.3 Total path delay analyze 37 5.5 DCF CCA Control 40 第六章 實驗結果 41 6.1 RF波形量測 41 6.2 802.11 throughput 46 第七章 結論 47 參考文獻 48

[1] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications. IEEE Std 802.11, 1999.
[2] IEEE 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5 GHz Band. IEEE Std802.11a, 1999.
[3] IEEE 802.11g, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11g, 2003.
[4] IEEE 802.11n, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11n, 2009.
[5] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. (Geoffrey) Li, M. A. Ingram and T. G. Pratt “Broadband MIMO-OFDM Wireless Communications,” in Proceedings of the IEEE, vol. 92, no. 2, Feb. 2004, pp.271-294.
[6] S. B. Weinstein and P. M. Ebert, ”Data transmission by frequency division multiplexing using Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, pp.628-634, Oct. 1971.
[7] A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computational complexity algorithms,” IEEE int. Conf. Acoust., Speech, Signal Processing , pp. 964-967, 1980.
[8] W.Y. Zou, and Y. Wu, “COFDM: An overview,” IEEE Trans. on
Broadcasting, vol. 41, no. 1, pp. 1 –8, Mar. 1995.
[9] WARP Forums:http://warpproject.org/trac/wiki/HardwareUsersGuides/WARPv3
[10] 徐文波, 田耘, Xilinx FPGA開發實用教學, 佳魁資訊, 2013.
[11] IEEE 802.11 Wireless LAN 網路: http://www.cs.nthu.edu.tw/~nfhuang/chap13.htm
[12] Mattbew S. Gast “802.11 wireless Network: The Definitive Guide,” pp.220,Apirl. 2002
[13] Shin-Cheng Hou “The Impact of RTS Settings on Transmission Performance in Mult-rate IEEE 802.11 Wireless Netowrk,” January. 2009
[14] AD9361 Reference Manual UG-570
[15] AD9361_Register_Map_Reference_Manual_UG-671
[16] Mango_WARP_v3_rev1p1_Schematics : http://warpproject.org/trac
[17] SPI wiki: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
[18] Analog Dialohue: http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
[19] Analog Device forums:
http://www.analog.com/en/index.html

QR CODE