簡易檢索 / 詳目顯示

研究生: 李佑誠
Yu-Cheng Lee
論文名稱: 電源遞送網路之阻抗平坦化設計
Design on the Flatness for the Impedance of Power Delivery Network
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 吳宗霖
Tzong-Lin Wu
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 電源遞送網路去耦合電容目標阻抗電源完整性
外文關鍵詞: Power Delivery Network (PDN), Decoupling Capacitor (Decap), Target Impedance, Power Integrity (PI)
相關次數: 點閱:186下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究電源遞送網路(Power Delivery Network, PDN)的輸入阻抗設計中,雖然有將阻抗設計在低於目標阻抗(Target Impedance)之下,但由於阻抗變化幅度過大,導致擾動電壓(Voltage Fluctuations)變化幅度也很大。在這樣的情況下,當負載端IC發生高低準位辨別錯誤時,擾動電壓彼此會互相重疊而變得更大,如此會使整個系統電路的電源完整性(Power Integrity, PI)受到影響。而在本文中,主要的PDN阻抗設計中心理念是透過萃取PDN的Z參數做運算,來找出相對重要性之擺放去耦合電容的位置(Decap Port),並制定挑選合適去耦合電容(Decoupling Capacitor, Decap)的規則,來達到PDN阻抗平坦化的目標,降低擾動電壓的變化幅度,藉此抑制瘋狗浪(Rogue Waves)的現象。從頻域上觀察,此方法在頻率範圍從100 KHz至100 MHz,PDN整體阻抗皆抑制在目標阻抗之下,其中在100 KHz至5 MHz的頻寬範圍之阻抗平坦化程度約17.5%左右,遠勝商用軟體最佳化結果的阻抗平坦化程度約41.4%,平坦化程度改善了約24%。


    This thesis mainly presents the input impedance design of the power delivery network (PDN). If the impedance profile is not flat while staying at or below the target impedance, the worst-case transient noise gets bigger, which affects the power integrity (PI) of the system circuit. In this research, the main idea of the impedance of the power delivery network design is to find the relative importance of the decap ports by the Z parameters of the PDN, creating the rules for selecting the appropriate decoupling capacitor to achieve the flat impedance of the PDN, thereby suppressing the Rogue Waves. From the frequency domain observation, this method can efficiently suppress the impedance of the PDN below the target impedance from 100 KHz to 100 MHz, and the ratio of the flatness is 17.5% from 100 KHz to 5 MHz, which is better than the optimized results created by the commercial software.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 4 1.2.1平行板共振腔架構 5 1.2.2去耦合電容元件 6 1.2.3相對重要性之擺放去耦合電容的位置 8 1.3論文架構 11 第二章 電源遞送網路阻抗平坦化設計基礎原理 12 2.1瘋狗浪的成因及原理 12 2.2目標阻抗的制訂 17 2.3電容模型分析 22 2.4反諧振 24 第三章 電源遞送網路阻抗平坦化設計 30 3.1電源遞送網路阻抗平坦化流程圖 31 3.2找出相對重要性之擺放去耦合電容的位置 33 3.3擺放去耦合電容 39 3.4模擬結果與討論 43 第四章 結論 47 參考文獻 48

    [1] M. S. Sharawi, “Practical issues in high speed PCB design,” IEEE Potentials, Vol. 23. No. 2, 24-27, Apr. /May 2004.
    [2] M. Swaminathan and A. Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems-Chapter 1, Englewood Cliffs, NJ: Prentice-Hall, 2007.
    [3] W.-H. Tu and K. Chang, “Compact second harmonic-suppressed bandstop and bandpass filters using open stubs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2497–2502, Jun. 2006.
    [4] Jie Qin, Omar M. Ramahi, Victor Granatstein, “Novel Planar Electromagnetic Bandgap Structures for Mitigation of Switching Noise and EMI Reduction in High-Speed Circuits,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3, pp. 661–669, Aug. 2007.
    [5] Eric Bogatin, Istvan Novak, Steve Sandler, Larry Smith, Brad Brim, “Target Impedance and Rogue Waves,” DesignCon 2016.
    [6] Madhavan Swaminathan; A. Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems-Chapter 2, Englewood Cliffs, NJ: Prentice-Hall, 2007.
    [7] Joong-Ho Kim, Madhavan Swaminathan, “Modeling of Irregular Shaped Power Distribution Planes Using Transmission Matrix Method,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 24, NO. 3, AUGUST 2001.
    [8] [Online].Available:https://www.edn.com/design/pc-board/4437016/PDN-design-essentials-for-wideband-low-impedance.
    [9] Kyoungchoul Koo, Gerardo Romo L., Tao Wang, Tim Michalka, James Drewniak, “Fast Decap Assignment Algorithm for Optimization of Power Distribution Networks,” IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2017.
    [10] Kyoungchoul Koo, Gerardo Romo Luevano, Tao Wang, Selman O¨ zbayat, Tim Michalka, James L. Drewniak, “Fast Algorithm for Minimizing the Number of decap in Power Distribution Networks,” IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 60, NO. 3, JUNE 2018.
    [11] Istvan Novak, Oracle, “Systematic Estimation of Worst-Case PDN Noise,” PCB Design 007 QuietPower columns, QuietPower-34, November 2015.
    [12] Drabkin, et al, “Aperiodic Resonant Excitation of Microprocessor power Distribution Systems and the Reverse Pulse Technique,” Proceedings of EPEP 2002, p. 175.
    [13] Jae Young Choi, Ethan Koether, Istvan Novak, “Electrical and Thermal Consequences of Non-Flat Impedance Profiles,” DesignCon 2016, January 19 – 21, 2016, Santa Clara, CA.
    [14] Istvan Novak, Oracle, “How to Design a PDN for Worst Case?,” PCB Design 007 QuietPower columns, QuietPower-35, November 2015.
    [15] Jingook Kim, Songping Wu, Hanfeng Wang, Yuzou Takita, Hayato Takeuchi, Kenji Araki, Gang Feng, Jun Fan, “Improved Target Impedance and IC Transient Current Measurement for Power Distribution Network Design,” IEEE International Symposium on Electromagnetic Compatibility, 25-30 July, 2010.
    [16] Ruey Beei Wu, Power Integrity in SiP.- Lecture 2: Fundamental. [Online]. Available: http://cc.ee.ntu.edu.tw/~rbwu//pages/course.html#pi
    [17] Larry D. Smith and Eric Bogatin, Principles of Power Integrity for PDN Design—Simplified-Chapter1, Prentice Hall, 2017.
    [18] Paul, Clayton R., Introduction to Electromagnetic Compatibility-Chapter3, Wiley-Interscience, 2006.
    [19] Stephen H. Hall, Garrett W. Hall, James A. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices-Appendix C: Frequency-Domain Compoents in a Digital Signal, Wiley-IEEE Press, 2000.
    [20] Larry D. Smith and Eric Bogatin, Principles of Power Integrity for PDN Design—Simplified-Chapter5, Prentice Hall, 2017.
    [21] Steve Sandler, Heidi Barnes, “Introduction to Power Integrity”, 20th IEEE Workshop on Signal and Power Integrity, 8-11 May, 2016.
    [22] Eric Bogatin, Signal and Power Integrity - Simplified, Prentice Hall, 2018.
    [23] Larry D. Smith, Raymond E. Anderson, Douglas W. Forehand, Thomas J. Pelc, Tanmoy Roy, “Power Distribution System Design Methodology and Capacitor Selection for Modern CMOS Technology,” IEEE Trans. Adv. Package, vol. 22, pp.284–291, 1999.
    [24][Online].Available:http://www.oldfriend.url.tw/article/PI/Power_Plane_and_Decoupling_Optimization.pdf.
    [25] [Online].Available:https://www.edn.com/design/pc-board/4439014/Reducing-PDN-impedance-at-high-frequencies.
    [26] Mu-Shui Zhang, Hong-Zhou Tan, Jun-Fa Mao, “New Power Distribution Network Design Method for Digital Systems Using Time-Domain Transient Impedance,” IEEE Transactions on Components, Packaging and Manufacturing Technology, VOL. 3, NO. 8, AUGUST 2013.
    [27] J., Knighten, B. Archambeault, J. Fan, G. Selli, S. Connor, J. Drewniak, ‘‘PDN Design Strategies: I. Ceramic SMT Decoupling Capacitors -- What Values Should I Choose?,’’ IEEE EMC Society Newsletter, Issue No. 207, pp. 46-53, Fall 2005.
    [28] J., Knighten, B. Archambeault, J. Fan, G. Selli, L. Xue, S. Connor, J. Drewniak, ‘‘PDN Design Strategies: II. Ceramic SMT Decoupling Capacitors -- Does Location Matter?,’’ IEEE EMC Society Newsletter, Issue No.208, pp. 56-67, Winter 2006.
    [29] Steve Sandler, “Target Impedance Limitations and Rogue Wave Assessments on PDN Performance,” DesignCon 2015.
    [30] Brad Brim, Sam Chitwood, Suomin Cui, Chuanlin Lv, Hongjun Bu, “Team-Based PCB PDN Design Methodology Enabled by IC Target Impedance Constraints,” DesignCon 2017.
    [31] Larry Smith, Eric Bogatin, “Principles of Power Integrity for PDN Design,” DesignCon 2018.
    [32] Shih-Ya Huang, Yung-Shou Cheng, Chieh-Yun Huang, Bob Liu, Stephen Chang, David Chiang, Phil Gu, Ruey-Beei Wu, “Efficient multi-node optimal placement for decoupling capacitors on PCB,” 2014 IEEE 18th Workshop on Signal and Power Integrity (SPI), 11-14 May 2014.
    [33] Tzong-Lin Wu, Hao-Hsiang Chuang, Ting-Kuang Wang, “Overview of Power Integrity Solutions on Package and PCB: Decoupling and EBG Isolation,” IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 52, NO. 2, MAY 2010.

    QR CODE