簡易檢索 / 詳目顯示

研究生: 劉紋君
Wen-Chun Liu
論文名稱: 單一觀測點與多個觀測點之電源遞送網路阻抗平坦化分析
Research of Single and Multiple Observation Ports on Flatness of Self-impedance on Power Distribution Network
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 吳宗霖
曾昭雄
丘建青
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 64
中文關鍵詞: 電源完整性電源遞送網路目標阻抗阻抗平坦化去耦合電容擾動電壓機器學習
外文關鍵詞: Power Integrity, Target Impedance, Decoupling Capacitor, Rogue wave
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電源遞送網路(Power Distribution Network, PDN)在印刷電路板(Printed
    Circuit Board, PCB)上係指由電壓調節模組(Voltage Regulator Module, VRM)
    遞送電源至積體電路(Integrated Circuit, IC)之路徑,其會包含許多元件。 隨著
    IC 切換頻率越來越高,所產生的暫態電流流經電源遞送網路會導致電壓有
    擾動變化,因此電路板上的電源完整性設計其一議題在於設計一個良好的電
    源遞送網路。
    為了保持電源供應的穩定,使 IC 能正常運作並降低其暫態雜訊, 會在
    VRM 附近放置容值較大的 Bulk 電容, IC 附近則放置一些去耦合電容,並
    將電源遞送網路之輸入阻抗設計低於目標阻抗之下。 然而, 輸入阻抗若在頻
    域上的呈現不平坦,縱使已設計於目標阻抗下,仍然有可能因為擾動的電壓
    相互疊加產生暫態雜訊,此一現象稱為 Rogue wave。
    本論文將針對 Rogue wave 的問題, 對多個觀測點的電源遞送網路提出
    一有效平坦化之方法, 並評估機器學習導入單一觀測點電源遞送網路的阻抗
    平坦化之可能性。


    With the switching frequency of IC higher, the impedance of the power
    distribution network (PDN) becomes lower to maintain the power integrity. To stabilize
    the supplement of power and let the IC work well and also lower the transient noise,
    designing an input impedance of PDN, which is lower than the target impedance is
    important. By putting some bulk capacitors near the VRM (Voltage Regulator Module)
    and some decoupling capacitors (decaps) near the IC, the impedance of PDN can be
    designed under the target impedance. However, if the profile of the impedance under
    the frequency domain is not flat enough, it still could cause some worst-case transient
    noise, called rogue-wave.
    In this research, an efficient algorithm for designing a PDN with multiple
    observation ports is proposed. The algorithm provides a way to avoid the problem of
    the rogue wave by designing a flattened input impedance. This research also analyzes
    the feasibility of applying a machine learning model with a classification-based deep
    neural network (DNN) structure to the designing process for a single observation port
    of PDN.

    摘要 ABSTRACT 誌謝 目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻探討 1.3 論文架構 第二章 電源遞送網路設計基礎理論 2.1 目標阻抗 2.2 電源遞送網路設計 2.3 Rogue wave 的成因 第三章 去耦合電容布局策略 3.1 觀測點 3.2 去耦合電容之佈局 3.3 去耦合電容特性分析 3.4 去耦合電容之挑選 3.5 機器學習應用於去耦合電容之挑選 第四章 結果與討論 4.1 針對多個觀測點阻抗平坦化案例結果與分析討論 4.2 針對單一觀測點以機器學習分析之案例討論 第五章 結論 參考文獻

    [1] M. S. Tanaka, M. Toyama, H. Nakashima, J. Yamada, M. Haida and I. Ooshima,
    "Chip oriented target impedance for digital power distribution network design,"
    2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging
    and Systems, 2012, pp. 220-223, doi: 10.1109/EPEPS.2012.6457881.
    [2] Istvan Novak, Oracle, “Systematic Estimation of Worst-Case PDN Noise,” PCB
    Design 007 QuietPower columns, QuietPower-34, November 2015
    [3] M. Swaminathan and A. Ege Engin, Power Integrity Modeling and Design for
    Semiconductors and Systems-Chapter 1, Englewood Cliffs, NJ: Prentice-Hall,
    2007.
    [4] J. Xu et al., "A Novel System-Level Power Integrity Transient Analysis
    Methodology using Simplified CPM Model, Physics-based Equivalent Circuit
    PDN Model and Small Signal VRM Model," 2019 IEEE International
    Symposium on Electromagnetic Compatibility, Signal & Power Integrity
    (EMC+SIPI), 2019, pp. 205-210, doi: 10.1109/ISEMC.2019.8825256.
    [5] Y. Kim et al., "Power distribution network design and optimization based on
    frequency dependent target impedance," 2015 IEEE Electrical Design of
    Advanced Packaging and Systems Symposium (EDAPS), 2015, pp. 89-92, doi:
    10.1109/EDAPS.2015.7383675.
    [6] Larry D. Smith and Eric Bogatin, Principles of Power Integrity for PDN Design—
    Simplified-Chapter13, Prentice Hall, 2017.
    [7] A. E. Moreno-Mojica, J. E. Rayas-Sánchez and F. J. Leal-Romo, "Power Delivery
    Network Impedance Profile and Voltage Droop Optimization," 2020 50th
    European Microwave Conference (EuMC), 2021, pp. 260-263, doi:
    10.23919/EuMC48046.2021.9338232.
    [8] K. Koo, L. G. Romo, T. Wang, T. Michalka and J. Drewniak, "Fast decap
    assignment algorithm for optimization of power distribution networks," 2017
    IEEE International Symposium on Electromagnetic Compatibility &
    Signal/Power Integrity (EMCSI), Washington, DC, 2017, pp. 573-578, doi:
    10.1109/ISEMC.2017.8077934.
    [9] K. Koo, G. R. Luevano, T. Wang, S. Özbayat, T. Michalka and J. L. Drewniak,
    "Fast Algorithm for Minimizing the Number of decap in Power Distribution
    Networks," in IEEE Transactions on Electromagnetic Compatibility, vol. 60,
    no. 3, pp. 725-732, June 2018, doi: 10.1109/TEMC.2017.2746677.
    [10] S. Piersanti, F. de Paulis, C. Olivieri and A. Orlandi, "Decoupling Capacitors
    Placement for a Multichip PDN by a Nature-Inspired Algorithm," in IEEE55
    Transactions on Electromagnetic Compatibility, vol. 60, no. 6, pp. 1678-1685,
    Dec. 2018, doi: 10.1109/TEMC.2017.2770089.
    [11] L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc and T. Roy, "Power
    distribution system design methodology and capacitor selection for modern
    CMOS technology," in IEEE Transactions on Advanced Packaging, vol. 22,
    no. 3, pp. 284-291, Aug. 1999, doi: 10.1109/6040.784476.
    [12] Jingook Kim, Songping Wu, Hanfeng Wang, Yuzou Takita, Hayato Takeuchi,
    Kenji Araki, Gang Feng, Jun Fan, “Improved Target Impedance and IC
    Transient Current Measurement for Power Distribution Network Design,”
    IEEE International Symposium on Electromagnetic Compatibility, 25-30 July,
    2010.
    [13] Henry W. Ott, 2009, “ Electromagnetic Compatibility Engineering,”
    Wiley Publishing
    [14] Paul, Clayton R., Introduction to Electromagnetic Compatibility-Chapter3,
    Wiley-Interscience, 2006.
    [15] Larry D. Smith and Eric Bogatin, Principles of Power Integrity for PDN Design—
    Simplified-Chapter1, Prentice Hall, 2017.
    [16] Stephen H. Hall, Garrett W. Hall, James A. McCall, High-Speed Digital System
    Design: A Handbook of Interconnect Theory and Design Practices-Appendix C:
    Frequency-Domain Compoents in a Digital Signal, Wiley-IEEE Press, 2000
    [17] Larry D. Smith and Eric Bogatin, Principles of Power Integrity for PDN
    Design—Simplified-Chapter5, Prentice Hall, 2017.
    [18] Steve Sandler, “Target Impedance Limitations and Rogue Wave
    Assessments on PDN Performance,” paper 11-FR2 at DesignCon 2015,
    January 27 – 30, 2015, Santa Clara, CA.
    [19] V. Drabkin, C. Houghton, I. Kantorovich and M. Tsuk, "Aperiodic resonant
    excitation of microprocessor power distribution systems and the reverse pulse
    technique," 2002 IEEE 11th Topical Meeting on Electrical Performance of
    Electronic Packaging, 2002, pp. 175-178, doi: 10.1109/EPEP.2002.1057909.
    [20] Jae Young Choi, Ethan Koether, Istvan Novak, “Electrical and Thermal
    Consequences of Non-Flat Impedance Profiles,” DesignCon 2016, January 19
    – 21, 2016, Santa Clara, CA.
    [21] Istvan Novak, Oracle, “How to Design a PDN for Worst Case?,” PCB Design
    007 QuietPower columns, QuietPower-35, December 2015
    [22] R. Sjiariel, "Power integrity simulation of power delivery network system,"
    2015 IEEE 19th Workshop on Signal and Power Integrity (SPI), 2015, pp. 1-
    5, doi: 10.1109/SaPIW.2015.7237384.56
    [23] L. Zhang et al., "Decoupling Capacitor Selection Algorithm for PDN Based on
    Deep Reinforcement Learning," 2019 IEEE International Symposium on
    Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI), 2019,
    pp. 616-620, doi: 10.1109/ISEMC.2019.8825249.
    [24] L. Zhang, W. Huang, J. Juang, H. Lin, B. -C. Tseng and C. Hwang, "An
    Enhanced Deep Reinforcement Learning Algorithm for Decoupling Capacitor
    Selection in Power Distribution Network Design," 2020 IEEE International
    Symposium on Electromagnetic Compatibility & Signal/Power Integrity
    (EMCSI), 2020, pp. 245-250, doi: 10.1109/EMCSI38923.2020.9191512.
    [25] 尤智玉,「 去耦合電容佈局策略研究以實現電源遞送網路之阻抗平坦化」,
    碩士學位論文, 一百一十年七月

    無法下載圖示 全文公開日期 2025/08/23 (校內網路)
    全文公開日期 2025/08/23 (校外網路)
    全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE