簡易檢索 / 詳目顯示

研究生: 伍柏昌
Bo-Chang Wuu
論文名稱: 以集成機器學習應用於4G網路為基礎的無人機對公路上之特定車輛之監控及追蹤之實驗
Tracking Implementation of 4G-Networking UAV for the Surveillance of Specific Vehicle on a Highway by Integrated Machine Learning
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 陳永耀
Yung-Yao Chen
吳修明
Hsiu-Ming Wu
洪敏雄
Min-Hsiung Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 46
中文關鍵詞: 遠程4G網絡無人機視覺識別視覺追蹤YOLOXGANMLPRNKCF
外文關鍵詞: Remote 4G networking, UAV, Visual recognition, Visual tracking, YOLOX, GAN, MLPRN, KCF
相關次數: 點閱:214下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人機因其易於部署和鳥瞰視角而常用於監控和交通管理。車牌偵測和識別是交通監控應用中常見的問題。本研究首先設計基於YOLOX的車輛偵測(YOLOX-VD),其輸出的兩個目標車輛的邊界框通過另一個基於YOLOX的車牌偵測(YOLOX-LPD)進行訓練。由於車牌距離較遠(例如40m),通過生成對抗網絡(GAN)的超解析度技術以提高其解析度,從而將其輸出的邊界框通過修改的車牌識別網絡(MLPRN)進行訓練,以提升車牌識別的能力。之後,以核化相關濾波器(KCF)預測特定車輛在YOLOX-VD階段的邊界框。最後,以遠程4G網絡的六旋翼機實現包括YOLOX-VD,YOLOX-LPD,GAN-ESR,MLPRN和KCF-VT的集成機器學習,進行往返超過2500m的公路上特定車輛之監視和追蹤。


    Abstract---Characterized by their ease of deployment and bird’s-eye view, unmanned aerial vehicles are often for surveillance and traffic management. License plate detection and recognition are common problems in traffic surveillance applications. In this work, the YOLOX-based vehicle detection (YOLOX-VD) is first designed such that its output bounding boxes of two target vehicles are trained by another YOLOX-based license plate detection (YOLOX-LPD). Since the license plates are in a far distance (e.g., 40m), the super-resolution by generative adversarial network (GAN) increases their resolutions such that their output bounding boxes are trained by the modified license plate recognition network (MLPRN) to enhance license plate recognition. After that, Kernelized Correlation Filter (KCF) predicts the bounding box of the specific vehicle in the YOLOX-VD stage. Finally, the integrated machine learning, including YOLOX-VD, YOLOX-LPD, GAN-ESR, MLPRN, and KCF-VT, is implemented by a remote 4G networking hexa-rotor to surveil and track the specific vehicle on a highway with a round trip over 2500m.

    第一章 導論與文獻回顧 1 第二章 相關研究 4 2.1車牌識別 4 2.2 YOLOX 4 2.3生成對抗網絡的超解析度 5 2.4 無人機視覺導航 5 第三章 問題表述 7 第四章 集成機器學習方法 8 4.1架構 8 4.1.1 YOLOX 8 4.1.2 GAN-ESR 9 4.1.3 MLPRN 10 4.1.4 KCF-VT 11 4.2數據集 13 4.2.1 目標車輛 13 4.2.2 車牌 14 4.3代價函數 15 4.3.1 YOLOX 15 4.3.2 GAN-ESR 16 4.3.3 MLPRN 17 4.4訓練和驗證響應 18 4.4.1YOLOX-VD 和 YOLOX-LPD 18 4.4.2 MLPRN 20 4.5集成機器學習算法 21 第五章 實驗結果與討論 22 5.1實驗設置 22 5.2視覺識別 24 5.3公路上特定車輛的視覺監控及追蹤 27 5.3.1攝影機與車輛之短距離案例 29 5.3.2攝影機與車輛之長距離案例 30 第六章 結論和未來研究 32 參考文獻 33

    [1] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer, “UAV-enabled intelligent transportation systems for the smart city: applications and challenges,” IEEE Communications Magazine, pp. 22-28, Mar. 2017.
    [2] S. Wan, J. Lu, P. Fan, and K. B. Letaief, “To smart city: public safety network design for emergency,” IEEE Access, vol. 6, pp. 1451-1465, 2018.
    [3] L. Hu and Q. Ni, “IoT-driven automated object detection algorithm for urban surveillance systems in smart cities,” IEEE Internet Things J., vol. 5, no. 2, pp. 747–754, Apr. 2018.
    [4] Y. Yao, Y. Sun, C. Phillips, and Y. Cao, “Movement-aware relay selection for delay-tolerant information dissemination in wildlife tracking and monitoring applications,” IEEE Internet Things J., vol. 5, no. 4, pp. 3079–3090, Aug. 2018.
    [5] M. Wan, G. Gu, W. Qian, K. Ren, X. Maldague, and Q. Chen, “Unmanned aerial vehicle video-based target tracking algorithm using sparse representation,” IEEE Internet Things J., vol. 6, no. 6, pp. 9689-9706, Dec. 2019.
    [6] Y. Cao et al., ”VisDrone-DET2021: The vision meets drone object detection challenge results,” 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, Canada , pp. 2847-2854, Oct. 11-17, 2021.
    [7] D.-L. Nguyen, M. D. Putro, X.-T. Vo and K.-H. Jo, " Triple detector based on feature pyramid network for license plate detection and recognition system in unusual conditions,” IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan 20-23 June 2021.
    [8] M. A. Cheema, M. K. Shehzad, H. K. Qureshi, S. A. Hassan, and H. Jung, “A drone-aided blockchain-based smart vehicular network,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 7, pp. 4160-4170, Jul. 2021.
    [9] D. N. Das, R. Sewani, J. Wang, and M. K. Tiwari, “Synchronized truck and drone routing in package delivery logistics,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5772-5782, Sep.2021.
    [10] M. Liu, Y. Wan, F. L. Lewis, E. Atkins, and D. O. Wu, “Statistical properties and airspace capacity for unmanned aerial vehicle networks subject to sense-and-avoid safety protocols,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5890-5903, Sep.2021.
    [11] S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, “Data freshness and energy-efficient UAV navigation optimization: a deep reinforcement learning approach,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5994-6006, Sep. 2021.
    [12] X. Li, J. Wei, and H. Jiao, “Real-time tracking algorithm for aerial vehicles using improved convolutional neural network and transfer learning,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 3, pp. 2296-2305, Mar. 2022.
    [13] H. Li u, X. Li, M. Fan, G. Wu, W. Pedrycz, and P. N. Suganthan, “An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 4, pp.3061-3073, Apr. 2022.
    [14] A. V. Savkin, and H. Huang, “Navigation of a UAV network for optimal surveillance of a group of ground targets moving along a road,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 7, pp. 9281-9285, Jul. 2022.
    [15] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A clustering-based coverage path planning method for autonomous heterogeneous UAVs,” IEEE Trans. Intell. Transport. Syst., vol. 23, no.12, pp. 25546-25556, Dec. 2022.
    [16] Y. Cao, G. Wang, D. Yan, and Z. Zhao, “Two algorithms for the detection and tracking of moving vehicle targets in aerial infrared image sequences,” Remote Sens., vol. 8, no. 1, p. 28, 2015.
    [17] W. Wang, Y. Peng, G. Cao, X. Guo, and N. Kwok, “Low-illumination image enhancement for night-time UAV pedestrian detection,” IEEE Tran. Ind. Inform., vol. 17, no. 8, pp. 5208-5220, Aug. 2021.
    [18] X. Lu, J. Ji, Z. Xing, and Q. Miao, “Attention and feature fusion SSD for remote sensing object detection,” IEEE Trans. Instrum. Meas., vol. 71, article no. 5501309, 2021.
    [19] S.-J. Horng, J. Supardi, W. Zhou, C.-T. Lin, and B. Jiang, “Recognizing very small face images using convolution neural networks,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2103-2115, Mar. 2022.
    [20] H. Wu, J. Chen, T. Wang, X. Lai, and J. Cao, “Ship license plate super-resolution in the wild,” IEEE Signal Process. Lett., vol.30, pp. 394-398, 2023.
    [21] Y. Pang, J. Cao, Y. Li, J. Xie, H. Sun, and J. Gong, “TJU-DHD: A diverse high-resolution dataset for object detection,” IEEE Trans. Image Process., vol. 30, pp. 207-219, 2021.
    [22] C.-L. Hwang and Z.-E. Cheng, “Adjusted attention YOLOX-based far-distance face-recognition,” IEEE SMC2023, to be published, Hawaii USA, Oct. 1-4, 2023.
    [23] I. Bisio, C. Garibotto, H. Haleem, F. Lavagetto, and A. Sciarrone, “Traffic analysis through deep-learning-based image segmentation from UAV streaming, ” IEEE Internet Things J., vol. 10, no. 7, pp. 6059-6073, Apr. 2023.
    [24] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-ESRGAN: training real-world blind super-resolution with pure synthetic data,” IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 1905-1914, Aug. 17, 2021.
    [25] S. Zherzdev and A. Gruzdev, "LPRNet: License plate recognition via deep neural networks, " Comput. Vis Pattern Recognit., no. 6, pp. 248-253, 2018.
    [26] H. Wu, J. Chen, T. Wang, X. Lai, and J. Cao, “Ship license plate super-resolution in the wild,” IEEE Signal Process. Lett., vol. 30, pp. 394-398, 2023.
    [27] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, “A new CNN-based method for multi-directional car license plate detection,” IEEE Trans. Intell. Transport., vol. 19, no. 2, pp. 507-517, Feb. 2018.
    [28] M. Molina-Moreno, I. González-Díaz, and F. Díaz-de-María, “Efficient scale-adaptive license plate detection system,” IEEE Trans. Intell. Transport. Syst., vol. 20, no. 6, pp. 2109-2121, Jun. 2019.
    [29] X. Fan and W. Zhao, “Improving robustness of license plates automatic recognition in natural scenes,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 10, pp. 18845-18854, Oct. 2022.
    [30] D. Liu, J. Cao, T. Wang, H. Wu, J. Wang, J. Tian, and F. Xu, “SLPR: A deep learning based Chinese ship license plate recognition framework ,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 23831-23843, Dec. 2022.
    [31] X. Ke, G. Zeng, and W. Guo, “An ultra-fast automatic license plate recognition approach for unconstrained scenarios,” IEEE Trans. Intell. Transport. Syst., vol. 24, no. 5, pp. 5172-5185, May. 2023.
    [32] H. Y. Wan, J. Chen, Z. X. Huang, R. F. Xia, B. C. Wu, L. Sun, B. D. Yao, X. P. Liu, and M. D. Xing, “ AFSar:_An anchor-free SAR target detection algorithm based on multiscale enhancement representation learning,” IEEE Trans. Geosci. Remote Sens., vol. 60, Article no. 5219514, 2022.
    [33] X. Xu, Z. Feng, C. Cao, C. Yu, M. Li, Z. Wu, S. Ye, and Y. Shang, “STN-Track: Multiobject tracking of unmanned aerial vehicles by swin transformer neck and new data association method,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 8734-8743, 2022.
    [34] R. W. Liu, Y. Guo, J. Nie, Q. Hu, Z. Xiong, H. Yu, and M. Guizani, “ Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things,” IEEE Trans. Green Communication Networking, vol. 6, no. 3, pp. 1574-1587, Sep. 2022.
    [35] Y. Yang, X. Gao, Y. Wang, and S. Song, “VAMYOLOX: an accurate and efficient object detection algorithm based on visual attention mechanism for UAV optical sensors,” IEEE Sensor Journal, vol. 23, no. 11, pp. 11139-11155, Jun. 2023.
    [36] P. W. Patil, A. Dudhane, and S. Murala, “End-to-end recurrent generative adversarial network for traffic and surveillance applications,” IEEE Trans. Veh. Technol., vol. 60, no. 12, pp. 14550-14562, Dec. 2020.
    [37] R. Dong, L. Zhang, and H. Fu, “RRSGAN: Reference-based super-resolution for remote sensing image,” IEEE Trans. Geosci. Remote Sens., vol. 60, Article no. 5601117, 2022.
    [38] S. Jia, Z. Wang, Q. Li, X. Jia, and M. Xu, “Multiattention generative adversarial network for remote sensing image super-resolution,” IEEE Trans. Geosci. Remote Sens., vol. 60, Article no. 5624715, 2022.
    [39] Q. Bao, Y. Liu, B. Gang, W. Yang, and Q. Liao, “SCTANet: A spatial attention-guided CNN-transformer aggregation network for deep face image super-resolution,” IEEE Trans. Multimedia, DOI 10.1109/ TMM.2023.3238522, to be published, 2023.
    [40] Y. Wang, H. Wang, B. Liu, Y. Liu, J. Wu, and Z. Lu, “A visual navigation framework for the aerial recovery of UAVs,” IEEE Trans. Instrum. Meas., vol. 70, article no. 5019713, 2021.
    [41] X. Li, H. Huang, and A. V. Savkin, “Autonomous navigation of an aerial drone to observe a group of wild animals with reduced visual disturbance,” IEEE Syst. Journal, vol. 16, no. 2, pp. 3339-3348, Jun. 2022.
    [42] H. Yang, X. Li, Y. Guo, and L. Jia, “Discretization–filtering–reconstruction: railway detection in images for navigation of inspection UAV,” IEEE Trans. Instrum. Meas., vol. 71, article no. 3530313, 2022.
    [43] R. Duan, D. P. Paudel, C. Fu, and P. Lu, “Stereo orientation prior for UAV robust and accurate visual odometry,” IEEE Trans. Mechatronics, vol. 27, no. 5, pp. 3440-3450, Oct. 2022.
    [44] D. Liu, X. Zhu, W. Bao, B. Fei, and J. Wu, “SMART: Vision-based method of cooperative surveillance and tracking by multiple UAVs in the urban environment,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 24941-24956, Dec. 2022.
    [45] C.-L. Hwang, D. S. Wang, F. C. Weng, and S.-L. Lai, “Interactions between specific human and omnidirectional mobile robot using deep learning approach: SSD-FN-KCF,” IEEE Access, vol. 8, pp. 41186-41200, 2020.
    [46] C. Ledig, L. Theis, and F. Huszar, “Photo-realistic single image super-resolution using a generative adversarial network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 10.1109/CVPR.2017.19.
    [47] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO Series in 2021,” arXiv: 2107. 08430, pp. 1-7, 2021.
    [48] C.-L. Hwang, H. M. Wu, and J. Y. Lai, “On-line obstacle detection, avoidance and mapping of an outdoor quadrotor using EKF based fuzzy tracking incremental control,” IEEE Access, vol. 7, pp. 160203-160216, 2019.
    [49] C.-L. Hwang, J. Y. Lai, and Z. S. Lin, “Sensor-fused fuzzy variable structure incremental control for partially known nonlinear dynamic systems and application to an outdoor quadrotor,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 716-727, Apr. 2020.

    QR CODE