簡易檢索 / 詳目顯示

研究生: 謝凱勳
Kai-Hsun Hsieh
論文名稱: 設計與實現一類基於PLC的史都華平台
Design and Implementation of a Class of PLC-based Stewart Platforms
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 郭永麟
Yong-Lin Kuo
黃旭志
Hsu-Chih Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 並聯機器人史都華平台可程式控制器人機介面機電整合
外文關鍵詞: Parallel Robot, Stewart Platform, Programmable Logic Controller (PLC), Human-Machine Interface, Mechatronics
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究設計與實現了一類史都華平台,並採用三菱可程式邏輯控制器(Programmable Logic Controller, PLC)的IEC 61131-3國際標準編程語言設計程序,達成史都華平台的六軸姿態控制,藉由加裝Arduino與GY25所組成的姿態感測器(Attitude sensor),將系統開迴路控制(Open-loop system)與閉路控制(Close-loop system)的方式進行比較。可程式控制器具有強健運轉品質、高精度浮點運算、抗干擾性高及高精度的伺服控制等優點,其已經廣泛應用於各類自動化設備的產品。更因模組化的設計及易學習的編程語言,可在無需更動其程式架構下即能替換不同的驅動平台,滿足於現行在機電整合中需要快速設計、驗證與實現之需求。本研究結合工業級三菱PLC (Programmable Logic Controller)與KEYENCE HMI (Human–machine interaction),完成一個全數位化之史都華平台控制系統,實驗結果也顯示本研究方法的優點。本研究提供了在史都華平台設計與控制上另一項具可靠性與低成本的選擇。


In this study, I design and implement a class of Stewart platforms. The six-axis attitude control for the Stewart platform is achieved by Mitsubishi Programmable Logic Controller (PLC) IEC 61131-3. The attiude sensor constituted by Arduino and GY-25 is added to compare the performance of the open-loop and closed-loop systems. PLC has many advantages including: robust operation quality, high precision floating point operation, robust to interference, high-precision servo control, etc. It has been widely applied to various automation devices. Moreover, due to the modular design and easy-to-learn programming language, it can satisfy the requirements in mechatronic systems, including: rapid design, verification, and implementation, by replacing the driver interface without changing the programming structure.
This study integrates the industrial-level Mitsubishi PLC and KEYENCE HMI (Human-Machine Interface) to achieve a fully digitized Stewart platform control system Experimental results show the advantages of the proposed scheme. This study provides another reliable and low-cost choice for the design and control of the Stewart platform.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1前言 1 1.2 發展歷史與控制器概述 2 1.3 研究動機 6 1.4 章節說明 7 第2章 平台運動學分析 9 2.1 史都華架構 9 2.2 運動學原理及數學模型 10 2.2.1 數學模型 12 第3章 史都華平台設計 15 3.1平台設計與控制系統 15 3.2 可程式邏輯控制器介紹 21 3.2.1控制器L02CPU 24 3.2.2 LD75P4定位模組 28 3.2.3 L60ADVL8類比輸入模組 32 3.3 HMI介紹 34 3.4 步進馬達介紹 37 3.5 程式開發工具介紹 40 第4章 實驗與結果 43 4.1 介面設計開發工具與姿態感測器 43 4.2 開迴路控制實驗 47 4.3 閉迴路控制實驗 49 第5章 結論與未來研究方向 57 5.1 結論 57 5.2 未來研究方向 58 參考文獻 59

[1] D. Stewart, “A platform with six degrees of freedom,” Proceedings of the Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371-386, Jun. 1965.
[2] M. J. Zyda, R. B. McGhee, R. S. Ross, D. B. Smith, and D. G. Streyle, “Flight simulators for under $100000,” IEEE Computer Graphics and Applications, vol. 8, no. 1, pp. 19-27, Jan. 1988.
[3] G. Cirio, M. Marchal, S. Hillaire, and A. Lecuyer, “Six degrees-of-freedom haptic interaction with fluids,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 11, pp. 1714-1727, Nov. 2011.
[4] E. F. Fichter, “A Stewart platform-based manipulator: general theory and practical construction,” The International Journal of Robotics and Research., vol. 5, no. 2, pp. 157-182, Jun. 1986.
[5] K. M. Lee and D. K. Shah, “Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator,” IEEE Journal on Robotics and Automation, vol. 4, no. 3, pp. 354-360, Jun. 1988.
[6] Y. K. Byun and H. S. Cho, “Analysis of a novel 6-dof, 3-PPSP of parallel manipulator,” International Journal of Robotics Research,vol. 16, no. 6, pp. 859-872, Dec. 1997
[7] Z. J. Geng and L. S. Haynes, “Six degree-of-freedom active vibration control using the Stewart platforms,” IEEE Transactions on Control System Technology, vol. 2, no. 2, pp. 45-53, March 1994.
[8] Y. Wang, M. Soltani and D. M. A. Dil, “An Attitude Heading and Reference system for marine satellite tracking Antenna,” IEEE Journals & Magazines, vol. 64, no. 4, pp. 3095-3104, Apr. 2017.
[9] S. Yang, R. A. MacLachlan, and C. N. Riviere, “Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument,” IEEE/ASME Transacitons on mechatronics, vol. 20, no. 2, pp. 761-772, Apr. 2015.
[10] 鄭偉凡,「基於史都華平台之船舶動態重現之研究」,國立高雄海洋科技大學輪機工程研究所碩士論文,2006。
[11] Z. Wang, J. He, and H. Gu, “ Forward kinematics analysis of a six-degree-of-freedom Stewart Platform based on independent component analysis and nelder–mead algorithm,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 3, pp. 589-597, May 2011.
[12] T. Tanikawa and T. Arai, “Development of a micro-manipulation system having a two-fingered micro-hand” IEEE Transaction on Robotics and Automation, vol. 15, no. 1, pp. 152-162, Feb. 1999.
[13] Y. X. Su, B. Y. Duan, C. H. Zheng, Y. F. Zhang, G. D. Chen, and J. W. Mi, “Disturbance-rejection high-precision motion control of a Stewart platform,” IEEE Transactions on Control System Technology, vol.12, no. 3, pp. 364-374, May 2004.
[14] 蕭肇殷,「史都華平台設計與動態模擬」,私立逢甲大學材料與製造工程學系機械工程組碩士論文,2009。
[15] Y. Zhao, C. Zhang, D. Zhang, Z. Shi, and T. Zhao, “Mathematical model and calibration experiment of a large measurement range flexible Joints 6-UPUR six-axis force sensor,” Sensors, vol.16, no. 8, Aug. 2016.
[16] D. Zhang, D. G. Chetwynd, X. Liu, and Y. Tian, “Investigation of a 3-DOF micro-positioning table for surface grinding,” International Journal of Mechanical Sciences., vol. 48, no.12, pp. 1401-1408, Dec. 2006.
[17] G. Feng, J. Zhang, Y. Chen, and Z. Jin, “Development of a new type of 6-DOF parallel micro-manipulator and its control system,” Proceedings of the Robotics, Intelligent Systems and Signal Processing, Changsha, China, 8-13,October 2003, pp. 715-720.
[18] A. M. Mohammed and S. Li, “Dynamic Neural Networks for Kinematic Redundancy Resolution of Parallel Stewart Platforms,” IEEE Transactions on Cybernetics., vol. 46, no. 7, pp. 1538-1550, Jul. 2016.
[19] J. Borras and F. Thomas, “On the Primal and Dual Forms of the Stewart Platform Pure condition,” IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1205-1215, Dec. 2012.
[20] MathWorks: Modeling the Stewart platform. URL:
https://www.mathworks.com/help/physmod/sm/mech/ug/modeling-the-stewart-platform.html?ue (03 27 2018)

[21] Mathworks: Stewart platform Mechanical system. URL:
https://www.mathworks.com/matlabcentral/fileexchange/2334-stewart-platform-mechanical-system (03 27 2018)
[22] Mathworks: Stewart Platform controller tuning. URL:
https://www.mathworks.com/help/sldo/examples/stewart-platform-controller-tuning.html (03 27 2018)
[23] J. E. McInroy, F. Jafari, “Finding symmetric orthogonal Gough-Stewart platforms,” IEEE Transactions on Robotics., vol. 22, no. 5, pp. 880-889, Oct. 2006.
[24] PID控制器設計(二)~頻域規格控制與MATLAB模擬 國立中興大學自動控制實驗URL: http://aecl.ee.nchu.edu.tw/drupal/AECL/course/101_2/Control_lab/Slide/Lec10.pdf
[25] S. H. Chen and L. C. Fu, “Output feedback sliding mode control for a Stewart Platform with a nonlinear observer-based forward kinematics Solution,” IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp. 176-185, Jan. 2013.
[26] L. Yingjie, Z. Wenbai, and R. Gexue, “Feedback control of a cable-driven gough-stewart platform,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 198-202, Feb. 2006.
[27] C. S. Ukidve, J. E. McInroy, and F. Jafari, “Using redundancy to optimize manipulability of Stewart Platforms,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 475-479, Aug. 2008.
[28] M. Wan and W. A. McNeely, “Quasi-static approach approximation for 6 degrees-of-freedom haptic rendering,” Visualization, 2003. VIS 2003. IEEE 2003, Seattle, WA, USA,19-24,Oct 2003, pp. 257-262.
[29] 研華科技ADVANTECH工業電腦 URL:http://www.advantech.tw/
[30] 曹修銓,「使用六自由度史都華平台驗證火箭動態感測系統」,國立交通大學機械工程學系碩士論文,2013。
[31] 王崇飛,「類比數位資料轉換器簡介」,元智大學機械系大四自動化機構設計實務課程教材,2000
[32] Arduino MEGA2560 ADK Rev 3. https://store.arduino.cc/usa/arduino-mega-adk-rev3
[33] R. S. Stoughton and T. Arai, “A modified Stewart platform manipulator with improved dexterity,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp. 166-173, Apr. 1993.
[34] M. Almonacid, R. J. Saltaren, R. Aracil, and O. Reinoso, “Motion planning of a Climbing Parallel Robot,” IEEE Transactions on Robotics and Automation, vol. 19, no. 3, pp. 485-489, Jun. 2003.
[35] K. Bai and K. -M. Lee, “Direct field-feedback control of a ball-joint-like permanent-magnet spherical motor,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 975-986, Jun. 2014.
[36] K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Transactions on industrial electronics, vol. 40, no. 2, pp. 282-293, Apr. 1993.
[37] B. -H. Ronen, S. Moshe, and D. Shlomo, “Kinematics, dynamics and construction of a planarly actuated parallel robot,” Robotics and Computer-Integrated Manufacturing, vol. 14, no. 2, pp. 163-172, Apr. 1998.
[38] G. Lebert, L. Liu, and C. -N. Li, “Dynamic analysis and control of a Stewart platform manipulator,” Journal of Robotic Systems vol. 10, no. 5, pp. 629-655, Jul. 1993.
[39] J. Wang and C. Gosselin, “A new approach for the dynamic analysis of parallel manipulators,” Multibody System Dynamics, vol. 2, no. 3, pp. 317-334, Sep. 1998.
[40] M. -J. Liu, C. -X. Li, and C. -N. Li, “Dynamic analysis of the Gough-Stewart platform manipulator,” IEEE Transaction on Robotic and Automation, vol. 16, no. 1, pp. 94-98, Feb. 2000.
[41] J. P. Merlet, “Singular configurations of parallel manipulators and Grassmann geometry,” The international Journal of Robotics Research, vol. 8, no. 5, pp. 45-56. Oct 1989.
[42] W. Q. D. Do and D. C. H. Yang, “Inverse dynamic analysis and simulation of a platform type of robot,” Journal of Robotic Systems, vol. 5, no. 3, pp. 209-227, Jun. 1988.
[43] T. -R. Kane and D. A. Levinson, “The use of Kane’s dynamical equations in robotics,” The International Journal of Robotics Research, vol. 2, no. 3,Sep 1983.
[44] E. F. Fichter, “Stewart platform-based manipulator. general theory and practical construction,” International Journal of Robotics Research, vol. 5, no. 2, pp. 157-182, Jun. 1986.

無法下載圖示 全文公開日期 2023/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE