簡易檢索 / 詳目顯示

研究生: 辛彥緯
Yen-Wei Hsin
論文名稱: 數值求解器之粒子群演算法應用於散熱鰭片組的熱管位置最佳化
Optimization of the Heatpipe Location in a Stacked-Fin Heatsink Based on a New PSO Algorithm FDM Solver
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
黃緒哲
Shiuh-Jer Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 172
中文關鍵詞: 有限差分法散熱模組熱管位置最佳化粒子群演算法
外文關鍵詞: Finite Difference Method, Thermal Module, Heatpipe Location Optimization, Particle Swarm Optimization
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建構一套用於空冷散熱模組之熱管位置最佳化的設計輔助程式,其目的為於給定的設計規格下,藉由改變熱管於鰭片的位置來最小化散熱模組之熱阻,以降低散熱模組與晶片的接端溫度,使晶片能更穩定地運作。此設計輔助程式應用粒子群演算法處理最佳化問題,並整合有限差分法數值求解器及軸流扇流速模型以計算目標函數,即具不同熱管位置之散熱鰭片組的熱阻。關於數值方法的驗證,本研究提出的求解器對單一鰭片散熱問題,與商用軟體Ansys Fluent計算結果的最大差異為3.48%;而對於帶風扇鰭片組的散熱問題,在發熱率100W時與實驗值的誤差為-2.5%。此求解器簡化了鰭片的幾何形狀並使用二維計算網格,因此對同一散熱問題可較Fluent節省約80%的計算時間,使其更適合應用於需要評估大量設計參數的最佳化問題。在最佳化方法方面,於評比基因、粒子群以及生物地理等三種演算法後,得知粒子群演算法的極值搜尋能力為最佳。舉本研究探討的鰭片組為例,以規模60的族群執行粒子群演算法並迭代120次所得出之最佳熱管位置,相較於目前位置可使整體鰭片有效度由80.2%增加為86.0%,代表在不增加產品成本的情況下,鰭片組的熱阻得以降低7.6%,即晶片發熱率100W~150W時可降低其溫度1.2℃~1.8℃。


    A new Particle Swarm Optimization (PSO) algorithm incorporated with a finite difference numerical solver was proposed to optimize the location of heatpipes in a stacked-fin heatsink, in order to decrease the thermal resistance of a fan-cooled fin array. With lower thermal resistance, the heatsink mounted on an electronic package can lead to lower junction temperature, increasing stability and life span of the electronics. The new coded numerical solver, which solves the simplified 2-D governing equations for the fins’ convective heat transfer rate, is applied to calculate the objective function of the optimization algorithm. To verify the numerical solver, its calculation results were first compared with these obtained from commercial CFD software Ansys Fluent, getting the maximum 3.48% difference for single fin cooling problems. Regarding a fin array cooling problem, its calculated outcome is merely 2.5% deviated from the experimental data at 100W heat load. This established solver benefits from solving mathematic model with simplified fin geometry and 2D structural mesh, which saves roughly 80% computation time against Fluent for the same fin cooling problem, and becomes a better choice for solving objective functions.
    As for evaluating the optimization methods, PSO illustrates an outstanding performance comparing with Genetic Algorithm (GA) and Biogeography-Based Optimization (BBO) alogorithm. In the stacked-fin heatsink considered here, total fin efficiency is enhanced from 80.2% to 86.0% by optimizing the heatpipe location. Also, the thermal resistance of fin array is reduced by 7.6%, which enables the chip temperature to drop 1.2℃~1.8℃ between 100W~150W heat generation rate without extra product material cost. In conclusion, this research successfully combines the simplified finite-difference solver and the particle swarm optimization algorithm to construct an effective and time-saving tool for optimizing the thermal characteristics in the thermal management of elcectronic device.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 符號索引 第一章 緒論 1.1 研究動機與範圍 1.2 文獻回顧 1.2.1 穿熱管鰭片散熱模組之最佳化 1.2.2 數值方法 1.2.3 啟發式演算法 1.3 研究方法與流程 第二章 熱傳及流力之FDM求解器 2.1 散熱模組的數學模型 2.2 熱傳求解器 2.2.1 數值方法 2.2.2 實作FDM求解器與驗證案例討論 2.3 流體力學求解器 2.3.1 數值方法 2.3.2 實作FDM求解器與驗證案例討論 2.4 熱傳及流體力學求解器之整合 2.4.1 對流熱傳的處理方法 2.4.2 實作求解器 2.4.3 完整求解器之計算結果與討論 2.5 求解器之驗證 2.5.1 Fluent之建模及求解 2.5.2 FDM求解器計算結果與討論 第三章 散熱鰭片組熱傳之計算求解與實例驗證 3.1 散熱模組之熱傳及風洞實驗 3.2 FDM求解器進風口邊界條件 3.3 FDM求解器模型驗證 第四章 鰭片之熱管位置最佳化 4.1 啟發式演算法 4.1.1 基因演算法(GA) 4.1.2 粒子群演算法(PSO) 4.1.3 生物地理演算法(BBO) 4.2 最佳化演算 4.3 延伸探討 第五章 結論與建議 5.1 結果與討論 5.2 結論與建議 附錄 程式虛擬碼 參考文獻

    [1]林定皓,電子構裝技術與應用,新北市: 全華圖書,2018。
    [2]F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. Hoboken, NJ: Wiley, 2006, pp. 350.
    [3]M. Može, A. Nemanič, and P. Poredoš, “Experimental and numerical heat transfer analysis of heat-pipe-based CPU coolers and performance optimization methodology,” Applied Thermal Engineering, vol. 179, Article 115720, 2020.
    [4]X. Huang, C. Shi, J. Zhou, X. Lu, and G. Xu, “Performance analysis and design optimization of heat pipe sink with a variable height fin array under natural convection,” Applied Thermal Engineering, vol. 159, Article 113939, 2019.
    [5]T. S. Liang and Y. M. Hung, “Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes,” Energy Conversion and Management, vol. 51, no. 11, pp. 2109-2116, 2010.
    [6]L. Xie, X. Yuan, and W. Wang, “Thermal modeling of fan-cooled plate–fin heatsink considering air temperature rise for virtual prototyping of power electronics,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 11, pp. 1829-1839, 2020.
    [7]P. Ning, X. Wen, L. Li, and Q. Ge, “A finite differential method based compact thermal model in PSPICE,” 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017.
    [8]Y. O. Abdelsalam, S. Alimohammadi, and T. Persoons, “The application of evolutionary algorithms in multi-objective design and optimization of air cooled heatsinks,” Journal of Thermal Science and Engineering Applications, vol. 12, no. 2, Article 021003, 2020.
    [9]C. H. Liang, S. Zeng, Z. X. Li, D. G. Yang, and S. Sherif, “Optimal design of plate-fin heat sink under natural convection using a particle swarm optimization algorithm,” International Journal of Heat and Technology, vol. 34, pp. 275-280, 2016.
    [10]A. Hadidi, “A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm,” Applied Energy, vol. 150, pp. 196-210, 2015.
    [11]P. Teertstra, M. M. Yovanovich, and J. R. Culham, “Analytical forced convection modeling of plate fin heatsinks,” J. Electron. Manuf., vol. 10, no. 4, pp. 253–261, 2000.
    [12]林唯耕,電子構裝散熱理論與量測實驗之設計,新竹市: 清大出 版社,2017。
    [13]M. Owkes, Class Lecture, Topic: “A guide to writing your first CFD Solver,” Mechanical and Industrial Engineering Department, Montana State University, Bozeman, June, 2, 2017.
    [14]Y. S. Muzychka and M. M. Yovanovich, “Laminar forced convection heat transfer in the combined entry region of non-circular ducts,” J. Heat Transfer, vol. 126, no. 1, pp. 54-61, 2004.
    [15]S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 6th ed. NY: McGraw Hill, 2010.
    [16]Delta Electronics, “DC Fan, ” AFB0912HHB-F00 specification, April 2007.
    [17]E. Rathakrishnan, Elements of Heat Transfer, 1st ed. CRC Press, 2012.
    [18]Y. A. Çengel, J. M. Cimbala, and R. H. Turner, Fundamentals of Thermal-Fluid Sciences, 5th ed. Penn Plaza, NY: McGraw-Hill, 2017, pp. 788.
    [19]A. Bar-Cohen and W. M. Rohsenow, “Thermally optimum spacing of vertical, natural convection cooled, parallel plates,” ASME Journal of Heat Transfer, vol. 106, no.1, pp. 116–124, 1984.
    [20]A. M. V. Harley, S. H. Nikam, H. Wu, J. Quinn, and S. McFadden, “Code-to-code verification for thermal models of melting and solidification in a metal alloy: comparisons between a finite volume method and a finite element method,” Mech. Sci., vol. 11, pp. 125–135, 2020.
    [21]ANSYS Inc. Staff, ANSYS Fluent User’s Guide, ANSYS Inc., 2013.
    [22]ANSYS Inc. Staff, ANSYS Fluent Tutorial Guide, ANSYS Inc., 2017.
    [23]A. Bejan, A. J. Fowler, and G. Stanescu. “The optimal spacing between horizontal cylinders in a fixed volume cooled by natural convection,” International Journal of Heat and Mass Transfer, vol. 38, no. 11, pp. 2047-2055, 1995.
    [24]Sunonwealth Electric Machine Industry Co., “MagLev Fan & Blower, ” KDE 1209PTV3 datasheet, May 2007.
    [25]F. P. Bleier, Fan Handbook, Selection, Application and Design, NY: McGraw-Hill, 1997.
    [26]吳兌倩。「流線型鰭片散熱座數值與實驗之整合研究」。碩士論文,國立臺灣科技大學機械工程系,2004。
    [27]R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced Optimization Techniques, London: Springer-Verlag, 2012.
    [28]J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial intelligence, Michigan: U Michigan Press, 1975.
    [29]R. Eberhart and J. Kennedy, “Particle swarm optimization,” In Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
    [30]X. H. Hu, R. C. Eberhart, and Y. H. Shi, “Engineering optimization with particle swarm,” In Proc. IEEE International Conference on Swarm Intelligence Symposium, pp 53–57, 2003.
    [31]D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Computation, vol.12, no. 6, pp. 702-713, 2008.
    [32]F. van den Bergh and A. P. Engelbrecht, “A study of particle swarm optimization particle trajectories,” Information Sciences, vol. 176, no. 8, pp. 937-971, 2006.

    QR CODE