簡易檢索 / 詳目顯示

研究生: 陳婕昕
Chieh-Hsin Chen
論文名稱: 利用多層合金為ITO-Free陽極之高效率深紅光有機發光二極體
High efficiency and deep red Organic Light Emitting Diodes employing multilayered alloy as ITO-Free anode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 有機發光二極體ITO-Freeexciplex磷光發光體醫療光源深紅光有機發光二極體
外文關鍵詞: photobiomodulation, ITO-Free, deep red emission OLED, wearable electronics
相關次數: 點閱:302下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在於將有機發光二極體(organic light emitting diode, OLED)導入醫療光源的應用上,為了使光源能夠均勻的照射於肌膚,我們勢必將做成可撓式的元件,而要達成此一目的需要替換掉傳統的銦錫氧化物(indium tin oxide, ITO)陽極,取而代之的是多層合金(Al/ Al:Ag)陽極結構,以便我們在未來能實現此結構於可撓式的parelyne基板。由於金屬優異的導電特性,可大幅提升元件的電流並提高亮度,此外使用P型金屬氧化物摻雜的電洞注入層,可克服因離子化能量大而導致的電洞注入問題。利用激發錯合物(exciplex)的共主體系統可提高元件效率,exciplex主體能提高三重態激子的使用效率,實現高效率的主-客體間能量轉移。最終此ITO-Free元件之放光波長為628 nm,在此波長下的光源可促進頭髮生長並加速傷口癒合,亮度為100 cd/m2時驅動電壓為2.7 V,最大外部量子效率、電流效率及功率效率分別為17.1%、21.4 cd/A和25.3 lm/W,目前的研究成果已將此結構成功實現於發光區為20 × 20 mm的大面積玻璃基板上。OLED元件其具重量輕以及可撓性的特質,在穿戴式電子裝置的應用上,是極具發展潛力的前瞻技術之一。


The purpose of this thesis is to introduce organic light emitting diode (OLED) into photobiomodulation (PBM) applications. In order to make the light source irradiate evenly on the skin, we must make a flexible component. To achieve this goal, we replace the traditional indium tin oxide (ITO) anode with a multilayer alloy (Al/ Al:Ag) anode structure, so that we can realize this structure in the flexible parelyne substrate in the future. Due to high conductivity as well as low sheet resistant of metals, the current and brightness of our ITO-Free device can be greatly increased. In addition, the use of a hole injection layer doped with P-type transition metal oxide can overcome the problem of hole injection induced by high ionization energy. An exciplex cohost system is employed to utilize both singlet and triplet excitons to achieve high efficiency. Under the positive bias, carriers accumulate at the interface between donor and acceptor due to the different energy gap, and then directly combine with the red phosphorescent with almost zero energy loss. The obtained results of this ITO-Free device can achieve low turn-on voltage of 2.7 V at 100 cd/m2, and highly efficient of 17.1%, 21.4 cd/A and 25.3 lm/W corresponding to external quantum efficiency, current efficiency and power efficiency. Moreover, because of strong microcavity effect in this device, we can adjust the emission region to the specific wavelength by subtly tune the optical thickness. Finally, the emission wavelength peak is positioned at 628 nm, the emission within this range can have great benefit on hair growing and wound healing. The recent progress of this work already realized this structure based on a large area (20 × 20 mm) glass substrate. OLEDs with their properties of light weight, flexibility and high water vapor resistance of encapsulation, it is none doubt to be one of the most potential candidate for wearable electronics.

摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 介紹 1 1.3 研究動機 4 第二章 理論基礎 8 2.1 電洞注入材料 8 2.2 半穿透OLED電極選擇 10 2.3 高效率元件 11 2.3.1 主客發光機制 14 2.3.2 電荷轉移機制 16 2.3.3 螢光/磷光exciplex 18 2.4 微共振腔的理論及應用 22 2.5 ITO-Free 紅光元件 23 第三章 實驗流程與量測設備 25 3.1 製程設備 25 3.1.1 超音波震盪清洗機 (ultrasonic vibration) 25 3.1.2 溫控加熱板 (hot plate) 25 3.1.3 旋轉塗布機 (Spin coating) 26 3.1.4 紫外光曝光機 26 3.1.5 雷射雕刻機 (laser cutting) 27 3.1.6 高真空熱蒸鍍系統 (thermal evaporation) 27 3.1.7 氮氣循環手套箱系統 (nitrogen glovebox) 28 3.2 量測儀器 29 3.2.1 探針式膜厚儀 (α-step) 29 3.2.2 橢圓偏振儀 (ellipsometry) 30 3.2.3 分光式輝度計 (spectrophotometer) 30 3.2.4 光致發光光譜儀 (photoluminescence spectrometer) 31 3.2.5 紫外光-可見光光譜儀 (UV-vis spectrometer) 31 3.2.6 表面凱爾文探針掃描光譜儀 (scanning kelvin probe spectroscopy) 32 3.2.7 四點探針 (four-point probe) 32 3.2.8 變溫量測系統 33 3.2.9 原子力顯微鏡 (atomic force microscope, AFM) 33 3.3 製程前置作業 34 3.3.1 有機材料純化 34 3.3.2 黃光微影製程 35 3.4 製程步驟 36 3.4.1 基板清洗 36 3.4.2 高蒸空熱蒸鍍製程 36 3.4.3 元件封裝 37 第四章 結果與討論 38 4.1 電洞傳輸材料之選擇 38 4.2 主體材料之選擇 39 4.3 陽極之特性分析 41 4.3.1 金屬薄膜的表面型態 41 4.3.2 陽極厚度對於元件的影響 42 4.3.3 表面電阻及功函數分析 44 4.4 ITO-based和ITO-Free紅光OLED的電致特性 51 4.4.1 暫態EL (transient EL)特性 51 4.4.2 電容-電壓(capacitance-voltage, C-V)特性 52 4.4.3 阻抗-電壓(impedance-voltage, Z-V)特性 52 第五章 結論 54 參考文獻 55

[1] S. Chen et al., "Recent developments in top‐emitting organic light‐emitting diodes," Adv Mater, vol. 22, no. 46, pp. 5227-5239, 2010.
[2] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature, vol. 440, no. 7086, pp. 908-912, 2006.
[3] H. W. Bae, S. K. Kim, S. Lee, M. G. Song, R. Lampande, and J. H. Kwon, "Thermally Evaporated Organic/Ag/Organic Multilayer Transparent Conducting Electrode for Flexible Organic Light‐Emitting Diodes," Advanced Electronic Materials, vol. 5, no. 10, p. 1900620, 2019.
[4] N. N. Houreld, "Shedding light on a new treatment for diabetic wound healing: a review on phototherapy," The Scientific World Journal, vol. 2014, 2014.
[5] S. Mo, P.-S. Chung, and J. C. Ahn, "630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors," Current Optics and Photonics, vol. 3, no. 6, pp. 485-495, 2019.
[6] X. Wu et al., "Organic light emitting diode improves diabetic cutaneous wound healing in rats," Wound Repair and Regeneration, vol. 23, no. 1, pp. 104-114, 2015.
[7] Y. Jeon et al., "A wearable photobiomodulation patch using a flexible red‐wavelength OLED and its in vitro differential cell proliferation effects," Advanced Materials Technologies, vol. 3, no. 5, p. 1700391, 2018.
[8] M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, "P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide," Org Electron, vol. 10, no. 5, pp. 932-938, Aug 2009, doi: 10.1016/j.orgel.2009.05.007.
[9] J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, "Electronic structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials," J Appl Phys, vol. 110, no. 3, Aug 1 2011, doi: Artn 03371010.1063/1.3611392.
[10] J. Meyer et al., "Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism," Appl Phys Lett, vol. 96, no. 19, May 10 2010, doi: Artn 19330210.1063/1.3427430.
[11] J. Meyer, S. Hamwi, T. Bulow, H. H. Johannes, T. Riedl, and W. Kowalsky, "Highly efficient simplified organic light emitting diodes," Appl Phys Lett, vol. 91, no. 11, Sep 10 2007, doi: Artn 11350610.1063/1.2784176.
[12] J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications," Adv Mater, vol. 24, no. 40, pp. 5408-5427, Oct 23 2012, doi: 10.1002/adma.201201630.
[13] H. M. Zhang and W. C. H. Choy, "Transparent Al/WO3/Au film as anode for high efficiency organic light-emitting diodes," Org Electron, vol. 9, no. 6, pp. 964-967, 2008.
[14] H. Cho, C. Yun, J.-W. Park, and S. Yoo, "Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes," Org Electron, vol. 10, no. 6, pp. 1163-1169, 2009.
[15] H. Cho, C. Yun, and S. Yoo, "Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics," Opt Express, vol. 18, no. 4, pp. 3404-3414, 2010.
[16] Y. C. Han, M. S. Lim, J. H. Park, and K. C. Choi, "ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film," Org Electron, vol. 14, no. 12, pp. 3437-3443, 2013.
[17] H. M. Zhang and W. C. H. Choy, "Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices," Ieee T Electron Dev, vol. 55, no. 9, pp. 2517-2520, 2008.
[18] T.-H. Yeh, C.-C. Lee, C.-J. Shih, G. Kumar, S. Biring, and S.-W. Liu, "Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes," Org Electron, vol. 59, pp. 266-271, 2018.
[19] K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, "Transparent organic light emitting diodes using a multilayer oxide as a low resistance transparent cathode," Appl Phys Lett, vol. 93, no. 1, p. 241, 2008.
[20] S. Y. Ryu et al., "Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode," Appl Phys Lett, vol. 92, no. 2, p. 15, 2008.
[21] D. P. Edward and I. Palik, "Handbook of optical constants of solids," ed: Academic, Orlando, Florida, 1985.
[22] Y. G. Li, Q. R. Li, P. W. M. Blom, and G. J. A. H. Wetzelaer, "Optical outcoupling in monochromatic top-emitting organic light-emitting diodes with an Au/Ag semi-transparent electrode," Appl Phys Express, vol. 14, no. 2, Feb 1 2021, doi: ARTN 02200410.35848/1882-0786/abdac5.
[23] C. Zhang et al., "High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications," Adv Mater, vol. 29, no. 19, May 17 2017, doi: ARTN 160517710.1002/adma.201605177.
[24] D. Gu, C. Zhang, Y. K. Wu, and L. J. Guo, "Ultrasmooth and Thermally Stable Silver-Based Thin Films with Subnanometer Roughness by Aluminum Doping," Acs Nano, vol. 8, no. 10, pp. 10343-10351, Oct 2014, doi: 10.1021/nn503577c.
[25] M. G. Song et al., "Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications," Org Electron, vol. 76, Jan 2020, doi: ARTN 10541810.1016/j.orgel.2019.105418.
[26] M. Sarma and K.-T. Wong, "Exciplex: an intermolecular charge-transfer approach for TADF," Acs Appl Mater Inter, vol. 10, no. 23, pp. 19279-19304, 2018.
[27] C.-J. Shih et al., "Exciplex-forming cohost for high efficiency and high stability phosphorescent organic light-emitting diodes," Acs Appl Mater Inter, vol. 10, no. 2, pp. 2151-2157, 2018.
[28] B.-Y. Lin et al., "Exciplex-Sensitized Triplet–Triplet Annihilation in Heterojunction Organic Thin-Film," Acs Appl Mater Inter, vol. 9, no. 12, pp. 10963-10970, 2017.
[29] D. Chen, W. Li, L. Gan, Z. Wang, M. Li, and S.-J. Su, "Non-noble-metal-based organic emitters for OLED applications," Materials Science and Engineering: R: Reports, vol. 142, p. 100581, 2020.
[30] W.-Y. Hung et al., "Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor," Acs Appl Mater Inter, vol. 8, no. 7, pp. 4811-4818, 2016.
[31] C.-J. Shih et al., "Versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes," Acs Appl Mater Inter, vol. 10, no. 28, pp. 24090-24098, 2018.
[32] Q.-S. Tian, X.-D. Zhu, and L.-S. Liao, "Highly efficient exciplex-based OLEDs incorporating a novel electron donor," Materials Chemistry Frontiers, vol. 4, no. 6, pp. 1648-1655, 2020.
[33] C.-Y. Huang et al., "Insights into energy transfer pathways between the exciplex host and fluorescent guest: attaining highly efficient 710 nm electroluminescence," Journal of Materials Chemistry C, vol. 8, no. 17, pp. 5704-5714, 2020.
[34] R. H. Young, A. M. Feinberg, J. P. Dinnocenzo, and S. Farid, "Transition from Charge‐Transfer to Largely Locally Excited Exciplexes, from Structureless to Vibrationally Structured Emissions," Photochemistry and photobiology, vol. 91, no. 3, pp. 624-636, 2015.
[35] E. J. J. Groenen and P. N. T. van Velzen, "An electro-optical study of the electronic structure of exciplexes of 9, 10-dicyanoanthracene and of N, N-dimethylaniline," Molecular Physics, vol. 35, no. 1, pp. 19-31, 1978.
[36] H.-B. Kim and J.-J. Kim, "Recent progress on exciplex-emitting OLEDs," J Inform Display, vol. 20, no. 3, pp. 105-121, 2019.
[37] K. Goushi and C. Adachi, "Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes," Appl Phys Lett, vol. 101, no. 2, p. 023306, 2012.
[38] X. K. Liu et al., "Prediction and design of efficient exciplex emitters for high‐efficiency, thermally activated delayed‐fluorescence organic light‐emitting diodes," Adv Mater, vol. 27, no. 14, pp. 2378-2383, 2015.
[39] C. S. Oh, Y. J. Kang, S. K. Jeon, and J. Y. Lee, "High efficiency exciplex emitters using donor–acceptor type acceptor material," The Journal of Physical Chemistry C, vol. 119, no. 39, pp. 22618-22624, 2015.
[40] W.-Y. Hung, T.-C. Wang, P.-Y. Chiang, B.-J. Peng, and K.-T. Wong, "Remote steric effect as a facile strategy for improving the efficiency of exciplex-based OLEDs," Acs Appl Mater Inter, vol. 9, no. 8, pp. 7355-7361, 2017.
[41] T.-C. Lin et al., "Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes," Nature communications, vol. 9, no. 1, pp. 1-8, 2018.
[42] M. Wang et al., "Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High‐Efficiency Exciplex Light‐Emitting Diodes," Adv Mater, vol. 31, no. 46, p. 1904114, 2019.
[43] S. Hofmann, M. Thomschke, B. Lussem, and K. Leo, "Top-emitting organic light-emitting diodes," Opt Express, vol. 19, no. 23, pp. A1250-A1264, Nov 7 2011, doi: 10.1364/Oe.19.0a1250.
[44] D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, "Spontaneous emission from planar microstructures," Journal of Modern Optics, vol. 41, no. 2, pp. 325-344, 1994.
[45] C.-C. Wu, C.-L. Lin, P.-Y. Hsieh, and H.-H. Chiang, "Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices," Appl Phys Lett, vol. 84, no. 20, pp. 3966-3968, 2004.
[46] S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lussem, and K. Leo, "Top-emitting organic light-emitting diodes: Influence of cavity design," Appl Phys Lett, vol. 97, no. 25, Dec 20 2010, doi: Artn 25330810.1063/1.3530447.
[47] S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, "Top-emitting organic light-emitting diodes," Opt Express, vol. 19, no. 106, pp. A1250-A1264, 2011.
[48] Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Müller‐Meskamp, and K. Leo, "Achieving high efficiency and improved stability in ITO‐free transparent organic light‐emitting diodes with conductive polymer electrodes," Adv Funct Mater, vol. 23, no. 30, pp. 3763-3769, 2013.
[49] H. W. Lee et al., "Optimization of semitransparent anode electrode for flexible green and red phosphorescent organic light-emitting diodes," J Nanosci Nanotechno, vol. 15, no. 3, pp. 2404-2408, 2015.
[50] H. Lee et al., "Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch," Science advances, vol. 4, no. 11, p. eaas9530, 2018.
[51] Y. Jeon et al., "Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine," Light: Science & Applications, vol. 8, no. 1, pp. 1-15, 2019.
[52] J. Jayabharathi, S. Sivaraj, V. Thanikachalam, S. Panimozhi, and J. Anudeebhana, "Red, green and blue phosphorescent organic light-emitting diodes with ITO-free anode material," Journal of Photochemistry and Photobiology A: Chemistry, vol. 389, p. 112229, 2020.
[53] M. A. Triana, A. A. Restrepo, R. J. Lanzafame, P. Palomaki, and Y. Dong, "Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation," Journal of Physics: Materials, vol. 3, no. 3, p. 032002, 2020.

QR CODE