簡易檢索 / 詳目顯示

研究生: 張棋荏
Chang-Chi - Jen
論文名稱: 使用影像回授之機械臂操控球桿滾球平衡控制系統
Visual Feedback Control of a Robotic Ball-Beam Balance Control System
指導教授: 施慶隆
Ching-long Shih
口試委員: 楊英魁
Ying-kuei Yang
李文猶
Wen-yo Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 55
中文關鍵詞: 球與球桿平衡控制影像即時追蹤機械臂伺服控制反運動學FPGA
外文關鍵詞: ball-beam balancing control, real-time tracking, servo control, inverse kinematics, FPGA
相關次數: 點閱:502下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在以FPGA實現具有影像回授機械臂操控球桿滾球結合機構之平衡控制,整個系統分為三個部分;第一個部分為影像處理模組,利用影像感測器擷取即時球與球桿機構之影像,從回授影像中計算滾球位置及球桿角度。第二個部分為控制機械臂各軸馬達位置控制的伺服控制模組;以及第三個部分為球桿及滾球控制模組。上述之三個模組皆在FPGA發展板下以Verilog硬體語言實現。滾球位置及球桿角度由影像處理模組計算,基於影像回授的資訊設計PD控制器操控終端器在X-Z平面的位置以及球桿傾斜角度,機械臂的關節各軸為透過反運動學之伺服控制以平衡滾球至期望的位置。


    This paper proposes a visual feedback control of a robotic ball- beam balance control system. The FPGA system herein includes three modules. One is image processing module which applies image sensor to capture real-time ball-and-beam information and calculates ball position and beam angle. The second module is servo position control module for controlling a 5-axes robot manipulator. The third module is the ball-beam balancing control module. The system is implemented on FPGA and programmed by the Verilog hardware description language (HDL). First, ball position and beam angle are calculated by image processing module. Based on these visual feedback data, PD controller is designed to control the position of end-effector in X-Z plane and the inclination angle of beam. Finally, the joints of the robot manipulator are servo-control through the inverse kinematics so as to balance the ball at desired position.

    目錄 摘要 I Abstract II 致謝 III 圖目錄 IV 表目錄 VI 第一章 緒論 1 1.1 研究動機與目標 1 1.2 文獻回顧 2 1.3 論文大綱 4 第二章 系統架構介紹 5 2.1 實驗簡介 5 2.2 系統架構說明 6 2.2.1 球與球桿平衡機構 9 2.2.2 機械臂 10 2.3 控制硬體架構說明 11 2.3.1 Altera DE2-115 及CMOS影像感測器 11 2.3.2 Altera DE0-Nano 13 2.3.3 HC-05藍芽模組 14 第三章 球桿控制器及機械臂位置控制器設計 15 3.1 球桿角度控制器設計 16 3.2.1 基於二維空間的座標計算 17 3.3.2 直接運動學 19 3.2.3 反向運動學 21 3.3 機械臂位置控制器 23 3.3.1 數位PID控制器模組 24 第四章 FPGA程式架構 25 4.1 無線藍芽傳輸模組 26 4.2 系統控制模組 27 4.2.1 數位PD控制器 27 4.2.2 CORDIC 28 4.2.3 反運動學模組 29 4.3 機械臂控制模組 30 4.3.1 機械臂狀態機模組 31 4.3.2 數位PID控制器 33 第五章 機械臂控制球與球桿平衡實驗結果 34 5.1 機械臂控制 34 5.1.1五軸馬達暫態響應實驗 34 5.1.2 機械臂反運動學模擬驗證 36 5.2 機械臂控制球桿與滾球定點位置控制 37 5.2.1 滾球中央定點位置控制 39 5.2.2 滾球左側定點位置控制 41 5.2.3 滾球右側定點位置控制 42 5.2.4 滾球多定點位置控制 43 5.2.5 手動控制平衡滾球位置 45 5.3相關論文比較 46 第六章 結論與建議 48 6.1 結論與設計特點 48 6.1.1設計特點 49 6.2 建議 50 參考文獻 52

    [1] Huan-Wen Tzeng, Sheng-Kai Hung, “Design of ball-beam balance control system using neural-fuzzy algorithm,” IEEE International Conference on Fuzzy Systems,
    pp. 1221 - 1225, 2009.
    [2] Kwanghyun Ryu, Yonghwan Oh, “Balance control of ball-beam system using redundant manipulator,” IEEE International Conference on Mechatronics pp. 403 - 408, 2011.
    [3] E. P. Dadios, R. Baylon, R. De Guzman, A Florentino, R. M. Lee, Z. Zulueta, “Vision guided ball-beam balancing system using fuzzy logic,” IEEE International Conference on Industrial Electronics Control and Instrumentation, Vol. 3, pp. 1973-1978, 2000.
    [4] Iraj Hasanzade, Samira Mirmazahari Anvar, Narges Talebi Motlagh, “Design and implementation of visual servoing control for ball and beam system,” International Symposium on Mechatronics and Its Applications, pp. 1- 5, 2008
    [5] Anthony Brill, Jared A. Frank, Vikram Kapila, “Using inertial and visual sensing from a mounted smartphone to stabilize a ball and beam test-bed,” American Control Conference, pp. 1335 - 1340, 2016.
    [6] W. Yu, “Nonlinear PD regulation for ball and beam system, ” International Journal of Electrical Engineering Education, Vol. 46 , pp. 37 - 59, 2009.
    [7] I. Petrovic, M. Brezak, R.Cupec, “Machine vision based control of the ball and beam,” Advanced Motion Control, International Workshop, pp. 573 - 577, 2002.
    [8] Alejandro Israel Barranco Gutiérrez, Jesús Alberto Sandoval Galarza, Saúl Martínez Díaz, “Camera as position sensor for a ball and beam control system,” Computacióny Sistemas, Vol. 19, No. 2, pp. 273 - 282, 2015.
    [9] G. Sridharan , “Ball on beam on roller : a new control,” IEEE International Symposium , Vol. 4 , pp. 1318 - 1321, 2002.
    [10] Wu Yuanyuan, Liu Yongxin, “Fuzzy PID controller design and implement in Ball-Beam system,” Chinese Control Conference, pp. 3613 - 3616, 2015.
    [11] Changchun Hua, “Optimized PID position control of a nonlinear system based on correlating the velocity with position error,” Hindawi Publishing Corporation Mathematical Problems in Engineering , article ID 796057, 2015.
    [12] Xu Peng, Lei Li, Tan Zhi , “Human simulated intelligent control for ball and beam system,” Chinese Control Conference, pp. 96 - 100, 2010.
    [13] Abdulhakim A. Ezzabi, Ka C Cheok, Fatma A. Alazabi, “A nonlinear backstepping control design for ball and beam system,” IEEE International Midwest Symposium on Circuits and Systems, pp. 1318 - 1321, 2013.
    [14] Marco A. Moreno-Armendariz, Elsa Rubio, Cesar A. Perez-Olvera, “Design and Implementation of a visual fuzzy control in FPGA for the ball and plate system,” International Conference on Reconfigurable Computing and FPGAs, pp. 85 - 90, 2010.
    [15] R. M. Hirschorn ,“Incremental sliding mode control of the ball and beam,” IEEE Transactions on Automatic Control, pp. 1696 - 1700, 2002.
    [16] Wenzhuo Chen, Xiaomei Sui, Yonghui Xing ,“Modeling and modulation of nonlinear ball-beam system controller based on MATLAB,” International Conference on Fuzzy System and Knowledge Discovery, pp. 2388 - 2391, 2012.
    [17] Carlos G. Bolívar-Vincenty, Gerson Beauchamp-Báez,“Modelling the ball-and-beam system from Newtonian mechanics and from Lagrange methods,” Twelfth Latin American and Caribbean Conference for Engineering and Technology, 2014.
    [18] T. R. Maruthi , Arun D. Mahindrakar, “Robust stabilization using time-scaling and Lyapunov redesign The ball beam system,” International Conference on Control Automation Robotics & Vision, 2010.
    [19] Paul H. Eaton, Danil V. Prokhorov, Donald C. Wunsch, “Neurocontroller alternatives for fuzzy ball-and-beam systems with nonuniform nonlinear friction,” IEEE Transactions on Neural Networks , Vol. 11, pp. 423 - 435, 2000.
    [20] Jared A. Frank, José Antonio De Gracia Gómez , Vikram Kapila, “Using tablets in the vision-based control of a ball and beam test-bed,” International Conference on Informatics in Control, Automation and Robotics, Vol. 2, pp. 92 - 102, 2015.
    [21] Zhong-Hua Pang, Geng Zheng, Chun-Xiang Luo, “Augmented state estimation and LQR control for a ball and beam system,” IEEE Conference on Industrial Electronics and Applications, pp. 1328 -1332, 2011.
    [22] M. Amjad, M. I. Kashif, Shahrum S. Abdullah, Z. Shareef, “Fuzzy logic control of ball and beam system, ” International Conference on Education Technology and Computer, Vol. 3, pp. 489 - 493, 2010.
    [23] Mohammad Keshmiri , Ali Fellah Jahromi , Abolfazl Mohebbi , Mohammad Hadi Amoozgar and Wen-Fang Xie, “Modeling and control of ball and beam system using model based and non-model based control approaches,” International Journal on Smart Sensing and Intelligent Systems, Vol. 5, No. 1, 2012.
    [24] Jie Li, Xiaohui Qi, Yuanqing Xia, Zhiqiang Gao,“On asymptotic stability for nonlinear ADRC based control system with application to the ball-beam problem,” American Control Conference, pp. 4725 - 4730, 2016.
    [25] Jack Volder, “The CORDIC computing technique”, IRE Transactions on Electronics Computer, pp. 330 - 334, 1959.
    [26] 柯朝倫,基於 FPGA 開發模糊分類肌電訊號導引機械臂,國立台灣科技大學,2015。
    [27] 許榮顯,即時影像追蹤之球與球桿平衡控制系統設計,國立台灣科技大學,2015。
    [28] 施慶隆,控制系統分析與設計,全華科技圖書公司,2006。
    [29] 友晶科技,TRDB_D5M、DE2-115、DE0-Nano Hardware specification,2008。

    QR CODE