簡易檢索 / 詳目顯示

研究生: 許志豪
Chih-Hao Hsu
論文名稱: 利用X光吸收光譜探討二氧化鈦包覆碳球之蛋黃殼奈米結構的光催化降解機制與物理特性
Description of Photocatalytic Degradation Mechanisms and Physical Characteristics in Carbon@ Titania Yolk-shell Nanostructure by XAS
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳啟亮
Chi-Liang Chen
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 二氧化鈦X光吸收光譜光降解原位吸收光譜
外文關鍵詞: TiO2, X-rays Absorption Spectroscopy, Photodegradation, In-situ X-rays Absorption Spectroscopy
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗在不同的退火溫度下成功合成了碳球@二氧化鈦的蛋黃殼奈米結構。這些獨特結構的奈米材料可用作光催化劑來降解新興的水污染物乙醯胺酚。通過紫外-可見吸收光譜討論了二氧化鈦中空結構和碳球@二氧化鈦蛋黃殼奈米結構的光學性質和能隙特性的變化。電子顯微鏡圖分析表明,隨著持溫時間和溫度的變化,碳奈米球(蛋黃)逐漸收縮到最終消失。此外,X光繞射圖譜證實,二氧化鈦為銳鈦礦相,其結晶度取決於退火溫度。光降解分析研究發現,當樣品在400度的持溫時間設置為0.5和1小時時,殘留有奈米碳球的樣品提高了光催化效率。XANES分析結果表明,當奈米碳球存在於二氧化鈦中空球中時,二氧化鈦奈米結構產生晶格畸變,並具有更多的氧空位 (Vo) 和低價鈦(Ti3+)。因此,可以推斷出二氧化鈦中空球和蛋黃殼奈米結構的光催化降解效率與未佔據的Ti 3d態的晶體場分裂和軌道對稱性密切相關。此外,根據 EXAFS 分析,當存在碳奈米球時,在八面體晶格的xy平面上觀察到氧空位,導致 z 軸縮短和結構無序增加。原位 XAS 測量表明,光降解背後的光催化機制是由於碳奈米球接收移動電子,這些電子可受紫外光與可見光激發而分離。O-Ti-O的軌道對稱性變化使得三價鈦離子費米面附近混成的Ti-3dxy和O-2pπ軌域導帶中的電子流出到碳奈米球中,產生更多的導帶空位。該過程會降低電子和空穴的複合速度,從而提高光催化效率。


    Carbon@titania yolk-shell nanostructures were successfully synthesized at different annealing temperatures. These unique structure nanomaterials can be used as a photocatalyst to degrade the emerging water pollutant, acetaminophen (Paracetamol). The variations in optical properties and bandgap characteristics of TiO2 hollow structure and carbon@titania yolk-shell nanostructure are discussed by ultraviolet-visible absorption spectroscopy. An analysis of the HR-TEM images showed that the carbon nanospheres (yolk) are initially shrank and finally disappeared with a change in the holding time and temperature.Further, the XRD patterns confirmed that the TiO2 is in the anatase phase with different degrees of crystallinity depending on the annealing temperature.The photodegradation analysis studies have shown that the samples with residual carbon nanospheres have improved the photocatalytic efficiency, when the sample retention time at 400 degrees is set to 0.5 and 1 hour. XANES analysis results revealed that the TiO2 nanostructure generated lattice distortion, and has more oxygen vacancies (Vo) and low-valence titanium when carbon nanospheres exist in the TiO2 hollow shell. Therefore, it is deduced that the photocatalytic degradation efficiency of TiO2 hollow and yolk-shell nanostructure is strongly correlated to the crystal field splitting and orbital symmetry of the unoccupied Ti 3d state.
    Besides, according to EXAFS analysis, when carbon nanospheres are present, the oxygen vacancy is observed on the xy-plane of the octahedral lattice, which leads to the shortening of the z-axis and the increase of structural disorder. In-situ XAS measurement indicates that the photocatalytic mechanism underlying the photodegradation is due to that the carbon nanospheres receive the mobile electrons that are separated by not only ultraviolet but visible light excitation. The orbital symmetry change of O-Ti-O makes the electrons in the hybridized Ti 3dxy and oxygen 2p orbital conduction band near the Fermi surface of the trivalent titanium ion, to flow out to the carbon nanospheres, and create more conduction band vacancies. This process would reduce the recombination speed of electrons and holes, thus increase the photocatalytic efficiency.

    摘要 II Abstract IV 誌 謝 VIII 目 錄 IX 圖目錄 XI 表目錄 XIII 第一章 緒論 12 1.1 研究背景 12 第二章 文獻回顧與理論介紹 15 2.1 光觸媒原理與簡介 15 2.2 材料性質 18 2.2.1 二氧化鈦結構與性質 18 2.2.2 二氧化鈦合成方法 21 2.3 二氧化鈦改質以促進其光觸媒效率 25 2.3.1二氧化鈦光觸媒之缺點 25 2.3.2金屬元素摻雜 25 2.3.3 Ti3+離子的添加 28 2.3.4中空球結構(Hollow sphere) 30 2.3.5碳元素對TiO2的光降解影響 31 第三章 實驗方法 36 3.1 實驗流程 36 3.1.1碳球之製備 37 3.1.2二氧化鈦包覆碳球之中空球製備 37 3.1.3不同升溫條件下二氧化鈦包覆碳球所形成之二氧化鈦中空球製備 38 3.1.4 X光繞射分析 39 3.1.5 穿透式電子顯微鏡 40 3.1.6 紫外光/可見光吸收光譜 41 3.1.7 光觸媒性質 42 3.2  X光吸收光譜分析技術 43 3.2.1  XAS分析介紹 43 3.2.2  XAS分析量測方法 45 3.2.3  XAS光譜分析 50 3.2.4  XAS數據分析 53 第四章 結果與討論 59 4.1 XRD分析 59 4.2 TEM分析 63 4.3 UV-VIS 分析 64 4.4 光催化降解分析 58 4.5 XAS分析 68 4.5.1 Ti L3-edge 68 4.5.2 O K-edge 72 4.5.3 Ti K-edge 74 4.5.4 In-situ Ti L3-edge 77 4.5.5 EXAFS分析 80 4.5.6 綜合討論 85 第五章 結論 86 第六章 參考文獻 88  

    [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. nature. 1972;238(5358):37-8.
    [2] Khan SU, Al-Shahry M, Ingler WB. Efficient photochemical water splitting by a chemically modified n-TiO2. science. 2002;297(5590):2243-5.
    [3] Linsebigler AL, Lu G, Yates Jr JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews. 1995;95(3):735-58.
    [4] Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, et al. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir. 2008;24(2):547-50.
    [5] Ni M, Leung MK, Leung DY, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews. 2007;11(3):401-25.
    [6] Pavasupree S, Ngamsinlapasathian S, Nakajima M, Suzuki Y, Yoshikawa S. Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. Journal of Photochemistry and Photobiology A: Chemistry. 2006;184(1-2):163-9.
    [7] Yang M-H, Chen P-C, Tsai M-C, Chen T-T, Chang I-C, Chiu H-T, et al. Alkali metal ion assisted synthesis of faceted anatase TiO 2. CrystEngComm. 2013;15(15):2966-71.
    [8] Zhao J, Zou X-X, Su J, Wang P-P, Zhou L-J, Li G-D. Synthesis and photocatalytic activity of porous anatase TiO 2 microspheres composed of {010}-faceted nanobelts. Dalton Transactions. 2013;42(13):4365-8.
    [9] Ikeda S, Sugiyama N, Pal B, Marcí G, Palmisano L, Noguchi H, et al. Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron–hole recombination kinetics. Physical chemistry chemical physics. 2001;3(2):267-73.
    [10] Litter MI. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental. 1999;23(2-3):89-114.
    [11] Binas V, Sambani K, Maggos T, Katsanaki A, Kiriakidis G. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Applied Catalysis B: Environmental. 2012;113:79-86.
    [12] Chen D, Jiang Z, Geng J, Wang Q, Yang D. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial & engineering chemistry research. 2007;46(9):2741-6.
    [13] Chaudhuri RG, Paria S. Visible light induced photocatalytic activity of sulfur doped hollow TiO 2 nanoparticles, synthesized via a novel route. Dalton Transactions. 2014;43(14):5526-34.

    [14] Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y. Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Advanced Functional Materials. 2013;23(34):4246-54.
    [15] Li G, Zhang D, Jimmy CY. Thermally stable ordered mesoporous CeO 2/TiO 2 visible-light photocatalysts. Physical Chemistry Chemical Physics. 2009;11(19):3775-82
    [16] Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3(1):189-218.
    [17] 石豫臺,楊和學,科學研習,2013年 1月,No. 52-1
    [18] Oi LE, Choo M-Y, Lee HV, Ong HC, Abd Hamid SB, Juan JC. Recent advances of titanium dioxide (TiO 2) for green organic synthesis. Rsc Advances. 2016;6(110):108741-54.
    [19] Hanaor DA, Sorrell CC. Review of the anatase to rutile phase transformation. Journal of Materials science. 2011;46(4):855-74.
    [20] Kaur K, Singh CV. Amorphous TiO2 as a photocatalyst for hydrogen production: a DFT study of structural and electronic properties. Energy Procedia. 2012;29:291-9.
    [21] Nowotny MK, Sheppard LR, Bak T, Nowotny J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. The Journal of Physical Chemistry C. 2008;112(14):5275-300.
    [22] Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? The Journal of Physical Chemistry. 1995;99(45):16646-54.
    [23] Kitano M, Matsuoka M, Ueshima M, Anpo M. Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A: General. 2007;325(1):1-14.
    [24] Xie J, Jiang D, Chen M, Li D, Zhu J, Lü X, et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;372(1-3):107-14.
    [25] Lin CJ, Liou YH, Zhang Y, Chen CL, Dong C-L, Chen S-Y, et al. Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental. 2012;127:175-81.
    [26] Huang W-H, Su W-N, Chen C-L, Lin C-J, Haw S-C, Lee J-F, et al. Structural evolution and Au nanoparticles enhanced photocatalytic activity of sea-urchin-like TiO2 microspheres: An X-ray absorption spectroscopy study. Applied Surface Science. 2021;562:150127.

    [27] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society. 2010;132(34):11856-7.
    [28] Wang J, Yang P, Huang B. Self-doped TiO2− x nanowires with enhanced photocatalytic activity: Facile synthesis and effects of the Ti3+. Applied Surface Science. 2015;356:391-8.
    [29] Shang S, Jiao X, Chen D. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties. ACS applied materials & interfaces. 2012;4(2):860-5. [30] Zhang K, Zhang X, Chen H, Chen X, Zheng L, Zhang J, et al. Hollow titania spheres with movable silica spheres inside. Langmuir. 2004;20(26):11312-4.
    [31] Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Advanced Materials. 2000;12(3):206-9.
    [32] Wang H, Wu Z, Liu Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. The Journal of Physical Chemistry C. 2009;113(30):13317-24.
    [33] Gao L-d, Luo L-l, Chen J-f, Shao L. Synthesis of hollow titania using nanosized calcium carbonate as a template. Chemistry letters. 2005;34(2):138-9.
    [34] Zhuang Y, Sun J, Guan M. Template free preparation of TiO2/C core–shell hollow sphere for high performance photocatalysis. Journal of Alloys and Compounds. 2016;662:84-8.
    [35] Réti B, Kiss GI, Gyulavári T, Baan K, Magyari K, Hernadi K. Carbon sphere templates for TiO 2 hollow structures: Preparation, characterization and photocatalytic activity. Catalysis Today. 2017;284:160-8.
    [36] D.C. Koningsberger, R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, (1988)
    [37] Sayers DE, Stern EA, Lytle FW. New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray—absorption fine structure. Physical review letters. 1971;27(18):1204.
    [38] Teo BK. Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy. EXAFS: Basic Principles and Data Analysis: Springer; 1986. p. 21-33.
    [39] 葉承霖, 由X光吸收光譜探討以Fe當催化層奈米碳管電子結構, 淡江大學物理學系, 碩士論文(2000).
    [40] Bianconi A, Inoccia L, Stipcich S. EXAFS and Near Edge Structure: Proceedings of the International Conference Frascati, Italy, September 13–17, 1982: Springer Science & Business Media; 2012.

    [41] Wen B, Hao Q, Yin W-J, Zhang L, Wang Z, Wang T, et al. Electronic structure and photoabsorption of Ti 3+ ions in reduced anatase and rutile TiO 2. Physical Chemistry Chemical Physics. 2018;20(26):17658-65.
    [42] Zuo Y, Liu M, Zhang T, Hong L, Guo X, Song C, et al. Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. RSC Advances. 2015;5(23):17897-904.
    [43] Yang K-S, Lu Y-R, Hsu Y-Y, Lin C-J, Tseng C-M, Liou SYH, et al. Plasmon-Induced Visible-Light Photocatalytic Activity of Au Nanoparticle-Decorated Hollow Mesoporous TiO2: A View by X-ray Spectroscopy. The Journal of Physical Chemistry C. 2018;122(12):6955-62.
    [44] Kuo H-W, Lin C-J, Do H-Y, Wu R-Y, Tseng C-M, Kumar K, et al. Electronic and atomic structure of TiO2 anatase spines on sea-urchin-like microspheres by X-ray absorption spectroscopy. Applied Surface Science. 2020;502:144297.
    [45] Luca V, Djajanti S, Howe RF. Structural and Electronic Properties of Sol−Gel Titanium Oxides Studied by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B. 1998;102(52):10650-7.
    [46] Farges F, Brown GE, Rehr JJ. Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Physical Review B. 1997;56(4):1809-19.
    [47] Chen LX, Rajh T, Wang ZY, Thurnauer MC. XAFS Studies of Surface-Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal-Ions. J Phys Chem B. 1997;101(50):10688-97.
    [48] Purans J, Azens A, Granqvist CG. X-ray absorption study of Ce–Ti oxide films. Electrochimica Acta. 2001;46(13):2055-8.
    [49] 張佑誠, CeO2@TiO2中空核殼結構合成及其光觸媒之研究, 國立台灣科技大學材料科學與工程系研究所, 碩士論文, (2020).
    [50] Kronawitter CX, Kapilashrami M, Bakke JR, Bent SF, Chuang C-H, Pong W-F, et al. TiO2-SnO2:F interfacial electronic structure investigated by soft x-ray absorption spectroscopy. Physical Review B. 2012;85(12):125109.
    [51] Mao SS, Shen S, Guo L. Nanomaterials for renewable hydrogen production, storage and utilization. Progress in Natural Science: Materials International. 2012;22(6):522-34.
    [52] Finkelstein LD, Zabolotzky EI, Korotin MA, Shamin SN, Butorin SM, Kurmaev EZ, et al. Vacant states of TiO2 with rutile structure and their reflection in different-type x-ray absorption spectra. X-Ray Spectrometry. 2002;31(6):414-8.
    [53] Gloter A, Ewels C, Umek P, Arcon D, Colliex C. Electronic structure of titania-based nanotubes investigated by EELS spectroscopy. Physical Review B. 2009;80(3):035413.
    [54] Gao X, Ren P-G, Wang J, Ren F, Dai Z, Jin Y-L. Fabrication of visible-light responsive TiO2@C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants. Applied Surface Science. 2020;532:147482.
    [55] Lin C-J, Yang W-T. Ordered mesostructured Cu-doped TiO2 spheres as active visible-light-driven photocatalysts for degradation of paracetamol. Chemical Engineering Journal. 2014;237:131-7.
    [56] Tao H, Liang X, Zhang Q, Chang C-T. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen. Applied Surface Science. 2015;324:258-64.
    [57] Chen CL, Dong CL, Chen CH, Wu JW, Lu YR, Lin CJ, et al. Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Phys Chem Chem Phys. 2015;17(34):22064-71.
    [58] Wu J-W, Chen C-H, Lin CJ, Kumar SK, Lu Y-R, Liou Y, et al. Improved photocatalytic efficacy of TiO2 open nanotube arrays: A view by XAS. Applied Surface Science. 2020;527:146844.
    [59] Nasr O, Mohamed O, Al-Shirbini A-S, Abdel-Wahab A-M. Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. Journal of Photochemistry and Photobiology A: Chemistry. 2019;374:185-93.
    [60] Chiou C-H, Juang R-S. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. Journal of Hazardous Materials. 2007;149(1):1-7. [61] Jayashree S, Ashokkumar M. Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications. Catalysts. 2018;8(12):601.
    [62] Elahifard M, Sadrian MR, Mirzanejad A, Behjatmanesh-Ardakani R, Ahmadvand S. Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase. Catalysts. 2020;10(4):397.

    無法下載圖示 全文公開日期 2031/09/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE