簡易檢索 / 詳目顯示

研究生: 王光明
Kuang-Ming Wang
論文名稱: 丙烯腈基共聚高分子與二氧化鈦/丁二腈之固態複合電解質在固態鋰離子電池之應用
Application of composite solid electrolyte of acrylonitrile-based copolymer and titanium dioxide/succinonitrile in solid-state lithium-ion batteries
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 許榮木
Jung-Mu Shu
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 固態複合高分子電解質丁二腈二氧化鈦丙烯腈共聚合體增塑劑
外文關鍵詞: Solid Composite Polymer Electrolyte, Succinonitrile, Titanium Dioxide, Acrylonitrile Copolymer, Plasticizer
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與研究方向 5 1.2.1 電池原理 5 1.2.2 聚合物固態電解質 6 第2章 文獻回顧 7 2.1 正極材料 7 2.2 固態電解質的設計 10 2.2.1 有機固態電解質 10 2.2.2 混摻改性 12 2.2.3 共聚交聯 13 2.2.4 增塑劑 15 2.2.5 複合固態電解質 16 2.3 高分子合成機制 19 第3章 實驗方法與步驟 20 3.1 實驗藥品 20 3.2 實驗儀器與器材 21 3.3 高分子合成及固態電解液製備 22 3.3.1 PG5合成 22 3.3.2 固態電解液製備 22 3.4 固態電解質材料製備 23 3.4.1 膠體滲透層析儀(GPC)原理及製備 23 3.4.2 差示掃描量熱分析(DSC)原理及製備 23 3.4.3 熱重分析儀(TGA)原理及製備 23 3.4.4 機械性質測試樣品製備 24 3.4.5 傅立葉轉換紅外光譜分析(FT-IR)原理及樣品製備 24 3.4.6 本質黏度樣品製備 24 3.5 固態電解質電化學量測製備 25 3.5.1 正極製備 25 3.5.2 離子電導率樣品製備 26 3.5.3 線性掃描伏安(LSV)樣品製備 27 3.5.4 鋰離子遷移常數及介面穩定性樣品製備 28 3.5.5 固態電池製備 29 3.6 實驗流程圖 30 3.6.1 高分子合成 30 3.6.2 正極漿料製備 30 3.6.3 正極製備 30 第4章 實驗結果與討論 31 4.1 固態電解質材料分析 31 4.1.1 凝膠滲透層析分析 31 4.1.2 差示掃描量熱分析 33 4.1.3 熱重分析 35 4.1.4 機械性性質測試 36 4.1.5 傅立葉轉換紅外光譜分析 38 4.1.6 本質黏度分析 40 4.2 固態電解質電化學特性分析 42 4.2.1 鋰離子電導率 42 4.2.2 線性掃描伏安法 47 4.2.3 鋰離子遷移常數 48 4.2.4 鋰金屬固態電解質之界面穩定性 50 4.2.5 充放電循環性能之電池測試 52 4.2.6 交流阻抗分析 56 第5章 結論 59 第6章 未來工作與建議 60 參考資料 61 附錄A 67 附錄B 70

    1. Scrosati, B., J. Hassoun, and Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy & Environmental Science, 2011. 4(9): p. 3287-3295.
    2. Xia, S., et al., Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem, 2019. 5(4): p. 753-785.
    3. Fan, L., et al., Simultaneous suppression of the dendrite formation and shuttle effect in a lithium–sulfur battery by bilateral solid electrolyte interface. Advanced Science, 2018. 5(9): p. 1700934.
    4. Li, M., et al., 30 years of lithium‐ion batteries. Advanced Materials, 2018. 30(33): p. 1800561.
    5. Liu, J., et al., All-solid-state lithium ion battery: Research and industrial prospects. Acta Chimica Sinica, 2013. 71(06): p. 869.
    6. Janek, J. and W.G. Zeier, A solid future for battery development. Nature Energy, 2016. 1(9): p. 1-4.
    7. Xiaoxiong, X., et al., All-solid-state lithium-ion batteries: State-of-the-art development and perspective. Energy Storage Science and Technology, 2013. 2(4): p. 331.
    8. Lou, S., et al., Interface issues and challenges in all‐solid‐state batteries: lithium, sodium, and beyond. Advanced Materials, 2021. 33(6): p. 2000721.
    9. Kwak, W.-J., et al., Lithium–oxygen batteries and related systems: potential, status, and future. Chemical Reviews, 2020. 120(14): p. 6626-6683.
    10. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
    11. Xie, J. and Y.-C. Lu, A retrospective on lithium-ion batteries. Nature communications, 2020. 11(1): p. 2499.
    12. Pham, Q.-T. and C.-S. Chern, Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022. 29(4): p. 124.
    13. Oudenhoven, J.F., L. Baggetto, and P.H. Notten, All‐solid‐state lithium‐ion microbatteries: a review of various three‐dimensional concepts. Advanced Energy Materials, 2011. 1(1): p. 10-33.
    14. Fan, Y., et al., Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Materials, 2021. 40: p. 51-71.
    15. Zheng, F., et al., Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018. 389: p. 198-213.
    16. Zhao, W., et al., Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochemical Energy Reviews, 2019. 2: p. 574-605.
    17. Khan, S.A., et al., Advanced cathode materials and efficient electrolytes for rechargeable batteries: Practical challenges and future perspectives. Journal of Materials Chemistry A, 2019. 7(17): p. 10159-10173.
    18. Durmus, Y.E., et al., Side by side battery technologies with lithium‐ion based batteries. Advanced energy materials, 2020. 10(24): p. 2000089.
    19. Ravet, N., et al., Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 2001. 97: p. 503-507.
    20. Huang, H., S.-C. Yin, and L.s. Nazar, Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and solid-state letters, 2001. 4(10): p. A170.
    21. Zhang, X.-D., et al., Structure design of cathode electrodes for solid‐state batteries: challenges and progress. Small Structures, 2020. 1(3): p. 2000042.
    22. Wang, J., et al., Structure code for advanced polymer electrolyte in lithium‐ion batteries. Advanced Functional Materials, 2021. 31(12): p. 2008208.
    23. Zhou, D., et al., Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019. 5(9): p. 2326-2352.
    24. Pigłowska, M., et al., Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review. Materials, 2021. 14(22): p. 6783.
    25. Zhao, C.-Z., et al., Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Materials, 2020. 24: p. 75-84.
    26. Yu, X. and A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021. 34: p. 282-300.
    27. Popovic, J., et al., Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. Journal of Materials Chemistry A, 2021. 9(10): p. 6050-6069.
    28. Dirican, M., et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 2019. 136: p. 27-46.
    29. Sasikumar, M., et al., Titanium dioxide nano-ceramic filler in solid polymer electrolytes: Strategy towards suppressed dendrite formation and enhanced electrochemical performance for safe lithium ion batteries. Journal of Alloys and Compounds, 2021. 882: p. 160709.
    30. Nematdoust, S., et al., Understanding the role of nanoparticles in PEO-based hybrid polymer electrolytes for solid-state lithium–polymer batteries. The Journal of Physical Chemistry C, 2020. 124(51): p. 27907-27915.
    31. Gagliardi, G.G., et al., Composite polymers development and application for polymer electrolyte membrane technologies—A review. Molecules, 2020. 25(7): p. 1712.
    32. Ngai, K.S., et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22: p. 1259-1279.
    33. Perera, K., M.L. Dissanayake, and P. Bandaranayake, Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN). Electrochimica acta, 2000. 45(8-9): p. 1361-1369.
    34. Cai, X., et al., A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC advances, 2017. 7(25): p. 15382-15389.
    35. Grundish, N.S., J.B. Goodenough, and H. Khani, Designing composite polymer electrolytes for all-solid-state lithium batteries. Current Opinion in Electrochemistry, 2021. 30: p. 100828.
    36. Cao, J.-H., B.-K. Zhu, and Y.-Y. Xu, Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. Journal of membrane science, 2006. 281(1-2): p. 446-453.
    37. Chen, R., et al., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016. 3(6): p. 487-516.
    38. Meng, N., F. Lian, and G. Cui, Macromolecular design of lithium conductive polymer as electrolyte for solid‐state lithium batteries. Small, 2021. 17(3): p. 2005762.
    39. Wu, Z., et al., Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews, 2019. 109: p. 367-385.
    40. Murata, K., S. Izuchi, and Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries. Electrochimica acta, 2000. 45(8-9): p. 1501-1508.
    41. Polat, K., Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend. Applied Physics A, 2020. 126: p. 1-8.
    42. Lu, Y., Q. Zhang, and J. Chen, Recent progress on lithium-ion batteries with high electrochemical performance. Science China Chemistry, 2019. 62: p. 533-548.
    43. Yuan, F., et al., PAN–PEO solid polymer electrolytes with high ionic conductivity. Materials chemistry and physics, 2005. 89(2-3): p. 390-394.
    44. Zhang, Y., et al., Cross-linking network based on Poly (ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. Journal of Power Sources, 2019. 420: p. 63-72.
    45. Voigt, N. and L. van Wüllen, The effect of plastic-crystalline succinonitrile on the electrolyte system PEO: LiBF4: Insights from solid state NMR. Solid State Ionics, 2014. 260: p. 65-75.
    46. Bi, J., et al., A hybrid solid electrolyte Li 0.33 La 0.557 TiO 3/poly (acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. Journal of Materials Chemistry A, 2020. 8(2): p. 706-713.
    47. Abouimrane, A., et al., Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries. Journal of Power Sources, 2007. 174(2): p. 883-888.
    48. Yu, Q., et al., Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2021. 32(9): p. 2659-2678.
    49. Tang, S., W. Guo, and Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Advanced Energy Materials, 2021. 11(2): p. 2000802.
    50. Kerman, K., et al., practical challenges hindering the development of solid state Li ion batteries. Journal of The Electrochemical Society, 2017. 164(7): p. A1731.
    51. Li, B., et al., Li0. 35La0. 55TiO3 nanofibers enhanced poly (vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS applied materials & interfaces, 2019. 11(45): p. 42206-42213.
    52. Zhang, X., et al., Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017. 139(39): p. 13779-13785.
    53. Wu, Y., et al., Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries. InfoMat, 2021. 3(8): p. 827-853.
    54. Su, S., et al., Progress and perspective of the cathode/electrolyte interface construction in all‐solid‐state lithium batteries. Carbon Energy, 2021. 3(6): p. 866-894.
    55. Wang, H., et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Materials, 2020. 33: p. 188-215.
    56. Ruan, L., et al., Properties and applications of the β phase poly (vinylidene fluoride). Polymers, 2018. 10(3): p. 228.
    57. Yoon, H.-K., W.-S. Chung, and N.-J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochimica acta, 2004. 50(2-3): p. 289-293.
    58. Zhou, D., et al., In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries. Advanced Energy Materials, 2015. 5(15): p. 1500353.
    59. Rahman, M., et al., Fabrication and characterization of a solid polymeric electrolyte of PAN‐TiO2‐LiClO4. Journal of applied polymer science, 2010. 115(4): p. 2144-2148.
    60. Panero, S., et al., High voltage lithium polymer cells using a PAN-based composite electrolyte. Journal of The Electrochemical Society, 2002. 149(4): p. A414.
    61. Liu, K., et al., In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics, 2020. 345: p. 115159.
    62. Ma, Y., et al., Scalable, ultrathin, and high‐temperature‐resistant solid polymer electrolytes for energy‐dense lithium metal batteries. Advanced Energy Materials, 2022. 12(15): p. 2103720.
    63. Fan, L.-Z. and J. Maier, Composite effects in poly (ethylene oxide)–succinonitrile based all-solid electrolytes. Electrochemistry communications, 2006. 8(11): p. 1753-1756.
    64. Yu, X. and A. Manthiram, A long cycle life, all-solid-state lithium battery with a ceramic–polymer composite electrolyte. ACS Applied Energy Materials, 2020. 3(3): p. 2916-2924.
    65. Qiu, G., Y. Shi, and B. Huang, A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Research, 2022. 15(6): p. 5153-5160.
    66. Alarco, P.-J., et al., The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature materials, 2004. 3(7): p. 476-481.
    67. Feng, J., et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2021. 8: p. 1-12.
    68. Fu, F., et al., Unveiling and Alleviating Chemical “Crosstalk” of Succinonitrile Molecules in Hierarchical Electrolyte for High‐Voltage Solid‐State Lithium Metal Batteries. Energy & Environmental Materials, 2022.
    69. Vadhva, P., et al., Electrochemical impedance spectroscopy for all‐solid‐state batteries: Theory, methods and future outlook. ChemElectroChem, 2021. 8(11): p. 1930-1947.
    70. Westerhoff, U., et al., Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 2016. 4(12): p. 1620-1630.
    71. Steinhauer, M., et al., Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochimica Acta, 2017. 228: p. 652-658.
    72. Sharon, D., et al., Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. The Journal of physical chemistry letters, 2013. 4(18): p. 3115-3119.
    73. Marinaro, M., et al., Importance of reaction kinetics and oxygen crossover in aprotic Li–O2 batteries based on a dimethyl sulfoxide electrolyte. ChemSusChem, 2015. 8(18): p. 3139-3145.
    74. Yu, Q. and S. Ye, In situ study of oxygen reduction in dimethyl sulfoxide (DMSO) solution: a fundamental study for development of the lithium–oxygen battery. The Journal of Physical Chemistry C, 2015. 119(22): p. 12236-12250.
    75. Liu, X.-R., et al., In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS applied materials & interfaces, 2015. 7(18): p. 9573-9580.
    76. Wood III, D.L., J. Li, and C. Daniel, Prospects for reducing the processing cost of lithium ion batteries. Journal of Power Sources, 2015. 275: p. 234-242.
    77. Yang, L., et al., Direct View on the Origin of High Li+ Transfer Impedance in All‐Solid‐State Battery. Advanced Functional Materials, 2021. 31(35): p. 2103971.
    78. Weiss, M., et al., From liquid-to solid-state batteries: ion transfer kinetics of heteroionic interfaces. Electrochemical Energy Reviews, 2020. 3: p. 221-238.
    79. Yu, X. and A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science, 2018. 11(3): p. 527-543.
    80. Foran, G., et al., The impact of absorbed solvent on the performance of solid polymer electrolytes for use in solid-state lithium batteries. Iscience, 2020. 23(10).

    無法下載圖示 全文公開日期 2025/08/02 (校內網路)
    全文公開日期 2025/08/02 (校外網路)
    全文公開日期 2025/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE