簡易檢索 / 詳目顯示

研究生: 黃泓閔
Hong-Min Huang
論文名稱: 鎂-鋅-釔合金粉末經等通道轉角擠製成形後之微觀結構及性質之探討
Microstructure and properties of Mg-Zn-Y alloy powder consolidated by equal channel angular extrusion
指導教授: 丘群
Chun Chiu
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 球磨等通道轉角擠製鎂-鋅-釔合金
外文關鍵詞: Ball milling, Equal channel angular extrusion, magnesium-zinc-yttrium alloy
相關次數: 點閱:235下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究選用Mg97Zn1Y2合金切屑作為球磨製程的初始材料,並結合等通道轉角擠製製備合金塊材。研究目的在探討球磨製程及等通道轉角擠製路道次對鎂-鋅-釔塊材合金之成形性、相變化、顯微組織、機械性質及抗腐蝕性質影響。
      實驗結果顯示鑄造的Mg97Zn1Y2合金含有α-Mg及Mg12Y1Zn1相。以合金切屑進行球磨含有α-Mg、Mg93Zn2.8Y4.1的條狀物及Mg85Zn1Y14的顆粒,經過球磨Mg12Y1Zn1相分解。等通道轉角擠製後的合金塊材含有α-Mg、Mg93Zn1.2Y5.5的條狀物及氧化釔顆粒。其中以Bc路徑之等通道轉角擠製四道次有最好的硬度120 Hv及抗壓強度483MPa較傳統鑄造鎂-鋅-釔合金抗壓強度。


    In this study, Mg97Zn1Y2 alloy chips were ball milled and then the milled powder was consolidated by equal channel angular extrusion (ECAE). The purpose of this study is to investigate the effects of ball milling process and equal channel angular extrusion on the formability, phase transformation, microstructure, mechanical properties and corrosion resistance of the consolidated alloy.

    The experimental results show that the as-cast magnesium-zinc-yttrium alloy contains α-Mg and Mg12Y1Zn1 phase. Magnesium-zinc-yttrium alloy powder prepared by ball milling contains α-Mg, Mg93Zn2.8Y4.1 and Mg85Zn1Y14.The Mg12Y1Zn1 phase is decomposited during the milling process. Bulk magnesium-zinc-yttrium alloy consolidated by ECAE also contains α-Mg, Mg93Zn1.2Y5.5 and Y2O3. Among all of the ECAE consolidated samples, the one prepared using route Bc with four passes shows the highest hardness (120 Hv) and ultimate compressive strength (465 MPa), which is higher than that of the as-cast magnesium-zinc-yttrium alloy.

    中文摘要 II ABSTRACT III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 鎂及鎂合金簡介 3 2.1.1 添加合金元素對鎂合金影響 4 2.1.2 鎂-鋅-釔合金 5 2.2 機械球磨 7 2.2.1 金屬粉末的機械球磨過程 7 2.2.2 機械球磨的製程參數 10 2.2.3 機械球磨製備鎂合金 12 2.3 等通道轉角擠製 15 2.3.1 ECAE擠製路徑 16 2.3.2 ECAE粉末成形技術 19 2.3.3 ECAE粉末成形在鎂合金之應用 20 2.4 文獻回顧心得 25 第三章 實驗方法 26 3.1 實驗材料 27 3.2 材料製備 27 3.2.1 鑄造 29 3.2.2 球磨製程 30 3.2.3 等通道轉角擠製 33 3.3 材料試驗與分析 35 3.3.1 場發掃描式顯微鏡 35 3.3.2 X光繞射分析 35 3.3.3 熱差分析 36 3.3.4 粒徑分析 37 3.3.5 密度量測 37 3.3.6 硬度試驗 37 3.3.7 壓縮試驗 38 3.3.8 電化學極化曲線測試 39 3.3.9 浸泡試驗 40 第四章 結果與討論 41 4.1 鑄造合金分析 41 4.1.1 顯微組織觀察與X光繞射分析 41 4.2 粉末形貌與相分析 47 4.2.1 粉末形貌與粒徑分析 47 4.2.2 粉末結構分析 50 4.2.3 DTA分析 57 4.3 粉末經等通道轉角擠製後的顯微組織觀察及相之分析 59 4.3.1 X光繞射分析 59 4.3.2 EDS分析 62 4.3.3 顯微組織觀察 65 4.4 物理及機械性質分析 72 4.4.1 密度及孔隙率分析 72 4.4.2 硬度分析 73 4.4.3 壓縮測試分析 74 4.5 抗腐蝕分析 76 4.5.1 電化學 76 4.5.2 浸泡測試 78 第五章 結論 87 參考文獻 88

    [1]Y. Kawamura and M. Yamasaki, "Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure," Materials Transactions, vol. 48, no. 11 pp. 2986-2992, 2007.
    [2]Y. Yamamoto, Y. Sakamoto, Y. Masaki, and S. R. Nishitani, "First Principles Calculations of Solute Ordering in Mg­Zn­Y Alloys," Materials Transactions, vol. 54, no. 5 pp. 656-660, 2013.
    [3]H. Gao, K.-i. Ikeda, T. Morikawa, K. Higashida, and H. Nakashima, "Microstructures of Long-Period Stacking Ordered Phase of Mg­Zn­Y Alloy," Materials Transactions, vol. 54, no. 5, pp. 632-635, 2013.
    [4]B. Chen, D. Lin, X. Zeng, and C. Lu, "Effect of Solid Solution Treatment on Microstructure and Mechanical Properties of Mg97Y2Zn1 Alloy," Journal of Materials Engineering and Performance, vol. 22, no. 2, pp. 523-527, 2012.
    [5]D. H. Ping, K. Hono, Y. Kawamura, and A. Inoue, "Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy," Philosophical Magazine Letters, vol. 82, no. 10, pp. 543-551, 2010.
    [6]Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, "Rapidly solidified powder metallurgy Mg97Zn1Y2 Alloys with excellent tensile yield strength above 600 MPa," (in English), Materials Transactions, Article vol. 42, no. 7, pp. 1172-1176, Jul 2001.
    [7]Y. Kawamura and A. Inoue, "Development of high strength magnesium alloys by rapid solidification," (in English), Materials Science Forum, vol. 419-422, pp. 709-714, 2003.
    [8]M. A. Thein, L. Lu, and M. O. Lai, "Effect of milling and reinforcement on mechanical properties of nanostructured magnesium composite," Journal of Materials Processing Technology, vol. 209, no. 9, pp. 4439-4443, 2009.
    [9]A. Kantürk Figen and S. Pişkin, "Characterization and modification of waste magnesium chip utilized as an Mg-rich intermetallic composite," Particuology, vol. 17, pp. 158-164, 2014.
    [10]陳振華, 镁合金. 化學工業出版社(第一版), 2004.
    [11]李倉誠, 鎂合金結構件之熱間擠製成形性之研究. 國立台灣科技大學機械工程系碩士論文, 2008.
    [12]K. U. Kainer, Magnesium Alloys and Technology. WILEY-VCH Verlag GmbH & Co. KG aA, 2003.
    [13]Y. Chen, Z. Xu, C. Smith, and J. Sankar, "Recent advances on the development of magnesium alloys for biodegradable implants," Acta Biomater, vol. 10, no. 11, pp. 4561-73, Nov 2014.
    [14]Y. Kawamura, "Flame-resistant Magnesium Alloys with High Strength," 2013.
    [15]Y. Kawamura, "Flame-resistant Magnesium Alloys with High Strength," The Seventh Triennial International Fire & Cabin Safety Research Conference, 2013.
    [16]S. Iikubo, K. Matsuda, and H. Ohtani, "Phase stability of long-period stacking structures in Mg-Y-Zn: A first-principles study," Physical Review B, vol. 86, no. 5, 2012.
    [17]C. L. D. Castro and B. S. Mitchell, "Nanoparticles from Mechanical Attrition," Synthesis, Functionalization and Surface Treatment of Nanoparticles, pp. 1-15, 2002.
    [18]V. P. Balema, "Mechanical Processing in Hydrogen Storage Research and Development," Material Matters vol. 2, pp. 1-7, 2009.
    [19]C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science vol. 46, pp. 1-48, 2001.
    [20]D. L. Zhang, "Processing of advanced materials using high-energy mechanical milling," Progress in Materials Science, vol. 49, no. 3-4, pp. 537-560, 2004.
    [21]C. Suryanarayana, E. Ivanov, and V. V. Boldyrev, "The science and technology of mechanical alloying," Materials Science and Engineering: A, vol. 304-306, pp. 151-158, 2001.
    [22]P. Kuziora, M. Wyszyńska, M. Polanski, and J. Bystrzycki, "Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process," International Journal of Hydrogen Energy, vol. 39, no. 18, pp. 9883-9887, 2014.
    [23]H. Mindivan, A. Efe, A. H. Kosatepe, and E. S. Kayali, "Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites," Applied Surface Science, vol. 318, pp. 234-243, 2014.
    [24]M. Matsuda, Y. Kawamura, and M. Nishida, "Production of High Strength Mg97Zn1Y2 Alloy by Using Mechanically Alloyed MgH2 Powder," Materials Transactions, vol. 44, no. 4, pp. 440-444, 2003.
    [25]V. M. Segal, "MATERIALS PROCESSING BY SIMPLE SHEAR," (in English), Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Article vol. 197, no. 2, pp. 157-164, Jul 1995.
    [26]http://www.foundationcoalition.org/resources/nano/2005-Mar-22_ECAE_Lecture_2.pdf.
    [27]R. Z. Valiev and T. G. Langdon, "Principles of equal-channel angular pressing as a processing tool for grain refinement," Progress in Materials Science, vol. 51, no. 7, pp. 881-981, 2006.
    [28]M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, "The shearing characteristics associated with equal-channel angular pressing," (in English), Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Article vol. 257, no. 2, pp. 328-332, Dec 1998.
    [29]K. Xia, "Consolidation of Particles by Severe Plastic Deformation: Mechanism and Applications in Processing Bulk Ultrafine and Nanostructured Alloys and Composites," Advanced Engineering Materials, vol. 12, no. 8, pp. 724-729, 2010.
    [30]M. R. Rezaei, S. H. Razavi, and S. G. Shabestari, "Development of a novel Al–Cu–Ti metallic glass reinforced Al matrix composite consolidated through equal channel angular pressing (ECAP)," Journal of Alloys and Compounds, vol. 673, pp. 17-27, 2016.
    [31]M. Snajdar-Musa and Z. Schauperl, "ECAP - new consolidation method for production of aluminium matrix composites with ceramic reinforcement," Processing and Application of Ceramics, vol. 7, no. 2, pp. 63-68, 2013.
    [32]R. Derakhshandeh. H and A. Jenabali Jahromi, "An investigation on the capability of equal channel angular pressing for consolidation of aluminum and aluminum composite powder," Materials & Design, vol. 32, no. 6, pp. 3377-3388, 2011.
    [33]K. Gudimetla, S. Ramesh Kumar, B. Ravisankar, and S. Kumaran, "Densification of Al 5083 Mechanically Alloyed Powder by Equal Channel Angular Pressing," Transactions of the Indian Institute of Metals, vol. 68, no. S2, pp. 171-176, 2015.
    [34]P. Quang, Y. G. Jeong, S. C. Yoon, S. H. Hong, and H. S. Kim, "Consolidation of 1vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing," Journal of Materials Processing Technology, vol. 187-188, pp. 318-320, 2007.
    [35]I. Baker, D. Iliescu, and Y. Liao, "Containerless Consolidation of Mg Powders Using ECAE," Materials and Manufacturing Processes, vol. 25, no. 12, pp. 1381-1384, 2010.
    [36]A. V. Nagasekhar, Y. Tick-Hon, R. K. Guduru, and K. S. Ramakanth, "Multipass equal channel angular extrusion of MgB2 powder in tubes," Physica C: Superconductivity, vol. 466, no. 1-2, pp. 174-180, 2007.
    [37]X. L. Wu, W. Xu, M. Kubota, and K. Xia, "Bulk Mg Produced by Back Pressure Equal Channel Angular Consolidation (BP-ECAC)," Materials Science Forum, vol. 584-586, pp. 114-118, 2008.
    [38]H. C. Lee, C. G. Chao, T. F. Liu, C. Y. Lin, and H. C. Wang, "Effect of Temperature and Extrusion Pass on the Consolidation of Magnesium Powders Using Equal Channel Angular Extrusion," Materials Transactions, vol. 54, no. 5, pp. 765-768, 2013.
    [39]A. V. Nagasekhar, Y. Tick-Hon, and K. S. Ramakanth, "Mechanics of single pass equal channel angular extrusion of powder in tubes," Applied Physics A, vol. 85, no. 2, pp. 185-194, 2006.
    [40]M. Moss, R. Lapovok, and C. J. Bettles, "The equal channel angular pressing of magnesium and magnesium alloy powders," Jom, vol. 59, no. 8, pp. 54-57, Aug 2007.
    [41]R. Lapovok, D. Tomus, and B. C. Muddle, "Low-temperature compaction of Ti-6Al-4V powder using equal channel angular extrusion with back pressure," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 490, no. 1-2, pp. 171-180, Aug 2008.
    [42]陳家駿, "Mg97Zn1Y2粉末經機械合金法及等通道轉角擠製固化後之微觀結構及機械性質之探討," 國立台灣科技大學機械工程系碩士論文, 2016.
    [43]X. H. Shao, Z. Z. Peng, Q. Q. Jin, and X. L. Ma, "Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy," Acta Materialia, vol. 118, pp. 177-186, 2016.
    [44]D. A. Basha, R. Sahara, H. Somekawa, J. M. Rosalie, A. Singh, and K. Tsuchiya, "Interfacial segregation induced by severe plastic deformation in a Mg–Zn–Y alloy," Scripta Materialia, vol. 124, pp. 169-173, 2016.

    QR CODE