簡易檢索 / 詳目顯示

研究生: 宋柏廷
Po-Ting - Sung
論文名稱: 氮化鋁層厚度對 N 型矽基板鈍化效應之研究
Influence of AlN Layer Thickness on Passivation Effect for N-type Silicon Substrate
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
Bohr-Ran Huang
柯文政
Wen-Cheng Ke
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 氮化鋁鈍化層電導法
外文關鍵詞: Aluminum nitride, Passivation layers, Conductance mothed
相關次數: 點閱:282下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分為兩部分,第一部分探討不同氮氣流量下成長之氮化鋁,其晶粒大小對漏電流的影響。第二部分探討探討不同厚度的氮化鋁鈍化層,其等效固定電荷 Qeff、絕緣層陷阱電荷密度Not 以及介面缺陷密度Dit 對少數載子生命週期的影響。研究發現,N2/Ar為2/20時成長之氮化鋁,其晶粒大小為 24.6 nm,小於其他氮氣流率之晶粒大小(~32 nm),將氮氣流率為 2 與 16 sccm 之氮化鋁製作成MIS 元件後,從電流電壓量測中發現,氮氣流率為 2 sccm 之氮化鋁其漏電流密度為 4.26×10^-5 A/cm^2 ,大於氮氣流率為 16 sccm 之氮化鋁(8.52×10^-6 A/cm^2 ),因此較小的晶粒大小由於其漏電流路徑較短,漏電流較大。接著利用電容電壓以及2電導法分析氮化鋁層厚度 16、48 及 80 nm 之 MISCAP,由於 16 nm 之試片其漏電流嚴重,造成電容分析上的困難。從氮化鋁層厚度 48 及 80 nm 之試片,由於較高的介面缺陷密度與絕緣層陷阱電荷密度,其少數載子生命週期均較裸n 型矽基板低。而 16 nm 之氮化鋁試片等效固定電荷較高(2.61×10^12 cm^-2 ),其少數載子生命週期高於 48 nm 之氮化鋁試片。


There are two parts in the study. First, deposit the AlN layers in different N 2 flow rate and analyzing the leakage current density between grain size and N2 flow rate. Second, analyzing the effective fixed charge (Qeff ), insulator layers trap charge density (Not) and interface trap density (Dit ) of different AlN layers thickness. Then, discusses the minority carrier lifetime influencing by the Qeff , Not , and Dit . We observe that the grain size of AlN layers sputtering with N 2 /Ar = 2/20 is about 24.6 nm, which is smaller than the others AlN layers with higher N 2 /Ar (~32 nm). Therefore, we chose the N2/Ar = 2/20 and N2/Ar = 16/20 as condition. By using I-V measurement, the leakage current density of AlN layers sputtering with N2 /Ar = 2/20 is about 4.26×10^-5 A/cm^2 which is higher than the AlN layers with N2/Ar = 16/20 (8.52×10^-6 A/cm^2 ). We speculate that the smaller grain size is, the shorter leakage current path will be. Base on the result of N2 flow rate, we fabricate AlN MISCAP with N2/Ar = 16/20 in different AlN layers thickness 16, 48, 80 nm then analyzing by I-V, C-V, and conductance method. Due to the high leakage current of 16 nm AlN layers sample, the C-V characteristic is difficult to analyze. For the sample with AlN 48 and 80 nm, the minority carrier lifetime both lower than bare n-Si. We speculate that a high density of Dit and Not at interface and in AlN layers causing carrier trapped by the defect, thus, decreasing the minority carrier lifetime. On the other hand, the minority carrier lifetime of the sample with AlN 48 nm is higher than the sample with AlN 80 nm by the higher Qeff (2.61×10^12 cm^-2 ).

中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 第二章 實驗原理 7 2.1 氮化鋁之材料結構與性質 7 2.2 太陽能電池之鈍化 8 2.3 金氧半(MOS)二極體 9 2.3.1 MOS 電容 9 2.3.2 MOS 之電荷與介面缺陷 13 2.3.3 平帶電壓與等效固定電荷 15 2.3.4 遲滯現象與氧化層捕捉電荷 15 2.3 電導法 16 2.3.1 D it 電荷交換之能量損失觀念 17 2.3.2 單一介面缺陷之導納 (Admittance of single-level interface traps) 17 2.3.2 單能階介面缺陷之分佈 (Distribution of single-level interface trap) 20 2.4 少數載子生命週期 24 第三章 實驗步驟與儀器介紹 27 3.1 Al/AlN/n-Si MIS 元件之製備 27 3.2 量測儀器介紹 32 3.2.1 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscopy, FE-SEM) 32 3.2.2 橢圓偏光儀 (Ellipseometer) 33 3.2.3 X 射線繞射儀 (XRD) 34 3.2.4 載子生命期(Sinton WCT-120) 36 3.2.5 C-V 量測儀器 36 3.2.6 I-V 量測儀器 37 第四章 氮化鋁薄膜鈍化層之分析 38 4.1 濺鍍氮化鋁之氮氣流量分 38 4.2 串聯電阻效應 42 4.3 電流電壓曲線 49 4.4 平帶電壓與等效固定電荷 Qeff 51 4.5 介面缺陷密度 Dit 54 4.6 絕緣層陷阱電荷密度 Not 58 4.7 氮化鋁層對少數載子生命週期之影響 60 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 65

[1] Keiichiro Masuko, Masato Shigematsu, Taiki Hashiguchi, Daisuke Fujishima, Motohide Kai, Naoki Yoshimura,Tsutomu Yamaguchi, Yoshinari Ichihashi, Takahiro Mishima, Naoteru Matsubara, Tsutomu Yamanishi,Tsuyoshi Takahama, Mikio Taguchi, Eiji Maruyama, and Shingo Okamoto,” Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell” IEEE Journal of Photovoltaics, 4, 6, (2014).
[2] G. Krugel, A. Sharma, W. Wolke, J. Rentsch, and R. Preu, “Study of
hydrogenated AlN as an anti-reflective coating and for the effective surface
passivation of silicon”, Phys. Status Solidi RRL 7, 7, 457–460 (2013).
[3] W. C. Wang, M. C. Tsai, J. Yang, C. Hsu, M. J. Chen, “Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al 2 O 3 /TiO 2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition”, ACS Appl. Mater. Interfaces , 7, 10228−10237 (2015).
[4] 4Y. Liu, L. Zhu, L. Guo, H. Zhang, H. Xiao “Surface Passivation Performance of Atomic-Layer-Deposited Al 2 O 3 on p-type Silicon Substrates ”, Science Direct, 30(8), 835-838 (2014).
[5] X. Zhang, A. Cuevas, and A. Thomson “Process Control of Reactive Sputter Deposition of AlOx and Improved Surface Passivation of Crystalline Silicon”, IEEE Journal of Photovoltaics, 3, 1 (2013).
[6] Hadis MorkoçNitride, “Semiconductors and Devices, p.20
[7] http://accuratus.com/alumni.html
[8] http://www.mem.com.tw/yearbook2015/content.asp?sn=1411270016
[9] Yoshitaka Taniyasu, Makoto Kasu, “Improved Emission Efficiency of 210-nm Deep-ultraviolet Aluminum Nitride Light-emitting Diode”, NTT Technical
Review, 8, 8 (2010).
[10] T.S. Horányi, T. Pavelka, P. Tüttö, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, 63, 1-4, 306-311 (1993).
[11] 施敏,李明逵,半導體元件物理與製作技術,交大出版社 (2013).
[12] 施敏,張俊彥,半導體元件物理與製作技術,高立圖書有限公司 (2001).
[13] Q. Xie, D. Deduytsche, M. Schaekers et al., “Implementing TiO2 as gate dielectric for Ge-channel complementary metal-oxide-semiconductor devices by
using HfO 2 /GeO 2 interlayer”, Appl. Phys. Lett., 97, 112905 (2010).
[14] E. H. Nicollianm, J. R. Brews, “MOS Physics and Technology”, John Wiley-Interscience Publication
[15] Sinton instruments, “Test Methods for Contactless Carrier Recombination
Lifetime in Silicon Wafer, Blocks, and Ingots”, meeting ppt (2009).
[16] 國立交通大學奈米中心濕式清洗蝕刻台操作講義
[17] 劉瑞鴻, “氧化鋅奈米管/超奈米鑽石薄膜複合結構製作紫外光檢測器”, 碩士
論文國立台灣科技大學電子工程所 (2015).
[18] 盧宥任, 謝余松, 張益,’’ 橢圓偏光術於 ITO 透明導電膜量測應用(下)’’ ,
三光連雙月刊, 99 (2012).
[19] 蘇奕儒, N 型矽晶圓表面鈍化層之電性研究,元智大學碩士論文(2012).
[20] P. Scherrer, Mathematisch-Physikalische Klasse, 2, 98-100 (1918)
[21] J. Tao, C.Z. Zhao, C. Zhao, P. Taechakumput, M. Werner, S. Taylor, and P. R. Chalker, Materials, 5, 1005-1032 (2012).
[22] 林聖偉,“矽晶太陽能電池表面鈍化層之量測與分析-介面缺陷濃度與載子
捕捉截面積”, 國立清華大學碩士論文 (2010).
[23] W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, IEEE Electron Device Letters, 20, 179-181 (1999).
[24] Chang-Hoon Choi, Yider Wu, Jung-Suk Goo, Zhiping Yu, and Robert W. Dutton, IEEE Transactions on Electron Devices, 47, 10 (2000).
[25] T. Mattila, R. M. Nieminen, Physical Review B, 55, 15, 9571–9576 (1997)
[26] C. Stampfl, C. G. Van de Walle, Physical Review B, 65, 155212 (2002)
[27] D. K. Simon, P. M. Jordan, T. Mikolajick, and I. Dirnstorfer “On the Control of the Fixed Charge Densities in Al 2 O 3 -Based Silicon Surface Passivation Schemes”, ACS Appl. Mater. Interfaces, 7 (51), 28215–28222 (2015).
[28] S. Helland “Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells”, master thesis (2011).
[29] F. Kerstena, A. Schmidb , S. Bordihna , J. W. Müller, and J. Heitmann “Role of annealing conditions on surface passivation properties of ALD Al2O3 films” Energy Procedia, 38, 843-848 (2013).
[30] Vandana, N. Batra, J. Gope, R. Singh, J. Panigrahi, S. Tyagi, P. Pathi, S. K. Srivastava, C. M. S. Rauthan and P. K. Singh, “Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films”, Phys. Chem. Chem. Phys., 16, 21804 (2014).
[31] Schuldis, D., Richter, A., Benick, J., Hermle, M., “Influence of different post deposition treatments on the passivation quality and interface properties of thermal ALD Al2O3 capped by PECVD SiNx”, 27th European Photovoltaic Solar Energy Conference and Exhibition (2012).
[32] J. Benick, A. Richter, T. T. A. Li, N. E. Grant, K. R. McIntosh, Y. Ren, K. J. Weber, M. Hermle, S. W. Glunz Presented at the 35th PVSC (2010).
[33] E. Jia, C. Zhou, and W. Wang, “Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition”, Nanoscale Research Letters, 10:129 (2015).

QR CODE