簡易檢索 / 詳目顯示

研究生: 林益正
Yi-cheng Lin
論文名稱: 氮化鋁製程與性能之研究
Processing Parameters on the Performance of Aluminum Nitride
指導教授: 林舜天
Shun-tian Lin
口試委員: 黃坤祥
Kuen-shyang Hwang
顏怡文
Yee-wen Yen
賴振興
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 71
中文關鍵詞: 碳添加介電常數陶瓷射出成型熱傳導燒結還原氣氛熱碳還原氧含量氮化鋁
外文關鍵詞: Aluminum Nitride, Carbon addition, Sintering, Thermal conductivity, Oxygen content, Carbothermal reduction, Reduction atmosphere, dielectric constant, Powder injection molding
相關次數: 點閱:451下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁本身極易受到水解而使得含氧量增加,本研究發現表面鍍膜可以增加粉末的保存壽命,降低氧之污染。如果粉末受到氧化,可依照粉末中氧的含量來添加不同比例的奈米碳粉進行高溫之脫氧還原處理,脫氧會隨著添加碳含量的增加而增加。而含多種成份黏結劑之射出件在經過溶劑脫脂後,因為所殘留的碳含量僅達1wt%,所以經過1500℃,氮氣-3%氫氣之混合氣體脫氧還原後,則因為所有的碳被氫分解而使得碳不足以還原氧。所以添加不易與氫反應之奈米碳粉於射出件中並進行脫氧還原,其添加量要以射出前粉末中氧含量的多寡及碳氧結合比例的關係式來決定。
    而以燃燒合成法合成後之氮化鋁產物顆粒較粗糙且較難研磨,所以需要較多的研磨程序,然而粉末研磨的過程當中容易與研磨的機具產生金屬污染(如:鐵、矽等),會嚴重的降低熱傳導係數(~68W/m•K)。而經過熱碳還原之氮化鋁因為氧含量的降低,其熱傳導較高,可達156W/m•K,但碳與鐵的污染量過高卻會使得氮化鋁的介電常數拉高。而在未添加氧化釔的熱壓試片因為晶粒不易成長而使得過多的晶界面阻礙了熱的傳遞使得熱傳導的提昇受到限制(~79 W/m•K)。


    Aluminum Nitride(AlN) is easy to hydrolyze that causes increase in oxygen content, but surface coating can increase the preserving life and decrease the contamination of oxygen. In case of oxidation of AlN powder, nano carbon powder can be added according to its oxygen content to proceed thermal reduction. The result of reduction increases with increase in the added carbon. Powder injection molded specimens that uses multi-component binder yielded a carbon content of 1wt% after solvent debind, when debound in an atmosphere of N2-3%H2, most of the carbon is decomposed by hydrogen that causes insufficient carbon to reduce oxygen at 1500℃. Therefore, nano carbon powder was added that is hard to react with hydrogen in order to reduce oxygen. The content of added carbon must be decided by the reactive equation of C and O after injection molding.
    AlN powder produced in combustion synthesis is coarse and hard to grind to fine size. Consequently, it needs a prolong grinding, resulting in more contaminations like iron and silicon. It will seriously decrease the thermal conductivity of AlN to a value of about 68W/m•K. The AlN with carbothermal reduction has a higher thermal conductivity of 156W/m•K due to the decreased oxygen content. Nevertheless, contamination of carbon and iron will increase the dielectric constant of AlN. Besides, the hot-pressed AlN specimen without Y2O3 addition has limited grain growth and thus, a low thermal conductivity of about 79 W/m•K.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2氮化鋁之應用 3 1-2-1多晶片模組 (MCM, MultiChip Module)封裝 3 1-2-2功率放大器(PA, Power Amplifier)之封裝 4 1-2-3雷射二極體底層封裝板(Laser Diode Sub-mount) 4 1-2-4微波元件蝶型封裝(Microwave Butterfly package) 6 1-2-5藍/白光LEDs陶瓷表面封裝 7 1-2-6半導體製程設備 8 1-3基板材料比較 9 第二章 理論基礎 11 2-1氮化鋁的製造 11 2-2碳、氧對氮化鋁性能之影響 13 2-2-1氧化釔對氮化鋁之影響 13 2-2-2碳對氮化鋁之影響 15 2-2-3氧對氮化鋁之影響 17 2-3不純物對氮化鋁性能之影響 19 第三章 實驗步驟 21 3-1實驗流程 21 3-2粉體分析 24 3-3試片準備 25 3-4燒結及脫脂還原 27 3-5結構分析及性質量測 28 第四章 結果與討論 29 4-1表面鍍層對氮化鋁粉末之影響 29 4-1-1粉末噴霧造粒 29 4-1-2 EDS元素分佈分析 31 4-2還原氣氛及碳的添加量對氮化鋁性質之影響 33 4-2-1碳對氧的影響 33 4-2-2氫對氧的影響 34 4-2-3碳/氫對氧的影響 36 4-2-4氮化鋁射出製程之影響 38 4-2-5碳、氫、氧對氮化鋁射出件之影響 41 4-2-6 X光繞射分析 42 4-2-7熱分析 44 4-3製程污染物與燒結添加物對氮化鋁燒結性質之影響 48 4-3-1鐵對氮化鋁性質之影響 48 4-3-2燒結環境對氮化鋁性質之影響 51 4-3-3氧化釔對氮化鋁性質之影響 55 4-3-4熱壓製程對氮化鋁性質之影響 57 4-3-5 X光繞射分析 61 第五章 結論 64 第六章 參考文獻 65 附錄 67

    1. N. Kuramoto, H. Taniguchi, and I. Aso, Am. Cera. Soc. Bull., Vol.68, p.883-887, (1989)
    2. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Soli., Vol.48, p.641-642, (1987)
    3. W. Werdecker, F. Aldinger, IEEE Trans. Compon. Hybrids. Manu. Tech.,Vol.7, p.399-400, (1984)
    4. G. Selvaduray, L. Sheet, Mat. Sci. Tech., Vol.9, p.463-464, (1993)
    5. 汪建民, 陶瓷技術手冊, 中華民國科技發展協進會, p.781-783, (1994)
    6. E. Man, F. Yan, Ame. Cera. Soc. Inc., Vol.26, p.19-54, (1994)
    7. G. A. Slack, R. A. Tanzilli, R. O. Pohl, J. W. Vandersande, J. Phys. Chem. Solids, Vol.48, p.641-647(1987)
    8. http://www.kyocera.de/kyocera_n/english/index.html
    9. http://global.kyocera.com/prdct/semicon/index.html
    10. http://www.ceradyne.com/
    11. F. Miyashiro, N. Iwase, A. Tsuge, and F. Ueno, Trans. Compon. Hybrids. Manu. Tech., Vol.13, Vol.2, (1990)
    12. L. M. Sheppard, Am. Cream. Soc. Bull., Vol.69, p.1801-1812, (1990)
    13. F. J. H. Haussonne, Mat. Manu. Pro. Tech., Vol.10, p.717-718, (1995)
    14. Z. Munir, Cera. Bull., Vol.67, p342-349, (1988)
    15. K. Komeya, J. Cera. Soc. Jap., Vol.101, p.1286-1290, (1995)
    16. K. Mitsuo, U. Fumio, J. Am. Cera. Soc., Vol.77, p.1991-2000, (2004)
    17. Y. Yu, J. Euro. Cera. Soc.,Vol.22, p.247-252, (2002)
    18. http://www.ntktech.com/
    19. M. Alper, Chemical and Metallurgical Products Towanda, Pennsylvania, p.12-29, (1995)
    20. T. Nakamatsu, J. Mat. Sci., Vol.34, p.1553-1556, (1999)
    21. K. Wongchotigul, N. Chen, D .P. Zheng, X. Tang, M. G.. Spencer, Mat. Lett.,Vol.26, p.223-226, (1996)
    22. R. Metselaar, J. Euro. Cera. Soc.,Vol.15, p.1079-1085, (1995)
    23. Y. Zhang, Mat. Reas. Bull.,Vol.37, p.2393-2400, (2002)
    24. D. Hotza, O. Sahling, J. Mat. Sci.,Vol.30, p.127-132, (1995)
    25. K. Watari, M. E. Brito, M. Yasuoka, M. C. Valecikkos, J. Cera. Soc. Jap., Vol.103, p.891-900, (1995)
    26. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vander-Sande, Journal. Phys. Chem. Soli., Vol.48, p.641-47, (1987)
    27. E. K. Chang, J. Mat. Sci. lett., Vol.15, p.1580-1581, (1996)
    28. N. Hiromi, W. Koji, H. Hiroyuki, U. Kazuyori, Am. Cera. Soc.,Vol.85, p.3093-3095, (2002)
    29. M. Kasori, F. Ueno, A. Tsuge, J. Am. Cera. Soc.,Vol.77, p.1991-2000, (1994)
    30. G. C. Lai, Y.Nagai, J. Cera. Soc. Jap. Int. Edit., Vol.103, p.7-11, (1995)
    31. M. Kasu, N. Kobayasi, Appli. Phys. Lett.,Vol.76, p.2910-2912, (2000)
    32. J. R. L. Fernandez, C. Moyses Araujo, A. Ferreira dasilva, J. R. Leite, B. Sernelius, J. Crys. Grow.,Vol.231, p.420-427, (2001)
    33. W. Werdecker, F. Aldinger, IEEE Trans. Compon. Hybrids. Manu. Tech., Vol.4, p.399-400,(1984)
    34. V. Revankar, United Stated Patent, Patent Number: 5, 693, 305
    35. Z. Yongcheng, Binner, J. Mat. Sci. Lett., Vol.21, p.803-805, (2002)
    36. M. S. Koval'chenko, Yu. G.Tkachenko, D. Z. Yurchenko, R. A. Morozova, Poroshko. Metal., n5-6, p100-107, (2000)
    37. K. Watari, J. Cera. Soc. Jap., Vol.109, p.57-58, (2001)
    38. V. I.Trefilov, I. A.Morozov, R. A.Morozova, S. V.Satanin, D. Z.Yurchenko, Int. J. Hydro. Ener., Vol.21, p.1097-1099, (1996)
    39. V. I. Trefilov, I. A. Morozova, Poroshko. Metal., n3-4, p116-120, (2003)
    40. Yu. G.Tkachenko, R. A. Morozova, D. Z. Yurchenko, O. A. Shevchenko, I. A. Morozov, S. V.Satanin, Poroshko. Metal., n1-2, p.76-81, (1995)
    41. J. C. Kuang, C. R. Zhang, X. G. Zhou, S. Q. Wang, Mat. Resear. Bull., Vol.39, p.923-931, (2004)

    QR CODE