簡易檢索 / 詳目顯示

研究生: 黃幸文
Shing-wen Huang
論文名稱: 光纖感測光源研製及其重要感測參數之量測
Study on sensing light sources and their applications in fiber sensing parameters measurement
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 鍾勇輝
Yung-Hui Chung
謝振傑
Jen-Je Chieh
孫迺翔
Nai-Hsiang Sun
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 光纖感測布拉格光纖光柵Sagnac迴路光纖雷射
外文關鍵詞: fiber-optic sensing, fiber Bragg grating (FBG), Sagnac loop, fiber laser
相關次數: 點閱:223下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中設計光纖感測系統之光源,我們提出幾種不同架構的光纖雷射,分別為環型、光循環器式線性型與光纖迴路反射鏡式線性型,並使用摻鉺光纖與半導體光放大器作為增益介質。而光纖感測主要是以震動、溫度與應力應變之參數感測為目的,分別使用布拉格光纖光柵的波長飄移特性與極化保持光纖的高雙折射特性作為感測元件。首先介紹光纖感測相關技術之文獻回顧與布拉格光纖光柵原理特性,以及說明摻鉺光纖放大與光循環器之原理。第二章中介紹三種不同共振腔的摻鉺光纖雷射架構,並利用環型摻鉺光纖雷射結合光纖光柵組成震動感測系統,當震動的角度變化範圍在10°至40°時,波長變化30 pm至180 pm,功率變化0.6 dB至4.0 dB。
    其次,利用以線性型光纖雷射進行長距離的應力應變感測,當以摻鉺光纖放大器為其增益介質時,當距離長度達到25 公里時,因損耗過大而無法產生雷射;而以半導體光放大器為增益介質的光纖雷射仍有雷射輸出,其動態量測範圍可達25公里以上。接著,利用線性型光纖雷射以光纖光柵為感測端進行應力應變感測,其對於張力與壓力的靈敏度分別為1.52 pm/με 與2.09 pm/με。最後,利用不同長度的極化保持光纖與光纖極化控制器組成Sagnac迴路進行溫度感測,在溫度範圍為30 ℃至60 ℃時有較大範圍的線性關係且其靈敏度較佳,當極化保持光纖長度分別為1 m、2 m及3 m時,其靈敏度分別為1.21 nm/℃、1.18 nm/℃、1.23 nm/℃。


    In this thesis, we proposed several sensing light sources for fiber-optic sensing. There are ring cavity fiber laser, linear cavity fiber laser, fiber loop mirror (FLM) based fiber laser and semiconductor optical amplifier based fiber laser. The important parameters such as earthquake vibration, temperature, strain and stress etc. were measured and analyzed using either light source. First, we reviewed the development of fiber-optic sensing technologies, as well as the mechanism of fiber Bragg gratings, Erbium-doped fiber amplifier (EDFA) and optical circulator. The wavelength drift is 30 to 180 pm when the vibration angle ranges from 10°C to 40°C for a simple pendulum. Using FBGs as sensing heads, the measurement dynamic range is more than 25 km when a semiconductor optical amplifier based fiber laser is sued as sensing light source for strain/stress measurement. The sensitivities for strain and stress are 1.52 pm/με and 2.09 pm/με, respectively. Also, a Sagnac loop consisting of polarization maintaining fiber (PMF) and fiber polarization controller is used for temperature sensing. There is a linear relationship with good sensitivity in temperature range of 30℃ to 60 ℃. With the length of 1 m, 2 m and 3 m for PMFs, the sensitivity are 1.21 nm/℃、1.18 nm/℃ and 1.23 nm/℃,respectively.

    摘要 I Abstract II 目錄 III 圖表索引 VI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 2 第二章 光纖感測簡介與文獻探討 4 2-1光纖感測技術文獻回顧 4 2-2 布拉格光纖光柵 7 2-2-1布拉格光纖光柵理論分析 7 2-2-2 光纖光柵的製作 10 2-3 摻鉺光纖放大原理 13 2-4 光循環器簡介 15 第三章 以環型摻鉺光纖雷射為光源之震動感測系統 17 3-1 光纖光柵感測系統 17 3-2 光纖光柵參數感測理論分析 18 3-3 摻鉺光纖雷射原理與架構 20 3-3-1 摻鉺光纖雷射理論分析 20 3-3-2 線性型摻鉺光纖雷射 21 3-3-3 環型摻鉺光纖雷射 25 3-4 震動感測系統 26 3-4-1震動感測介紹 26 3-4-2 光纖光柵震動感測架構與原理 26 3-4-3 以環型摻鉺光纖雷射為光源之光柵震動感測系統架構 28 3-4-4光柵震動感測實驗結果 30 3-5 本章小結 35 第四章 以線性型光纖雷射為光源之應力應變感測系統 37 4-1 半導體光放大器之介紹 37 4-1-1 半導體光放大器之工作原理 37 4-1-2 半導體光放大器之增益及頻寬特性 39 4-2線性型半導體光放大器光纖雷射 42 4-3 線性型光纖雷射為光源之應力感測系統 43 4-3-1不同共振腔長度之光纖雷射 45 4-3-2 線性型光纖雷射為光源之應力感測結果 50 4-5 本章小結 54 第五章 Sagnac迴路之溫度感測系統 55 5-1 Sagnac迴路原理及感測理論 55 5-1-1 Sagnac迴路原理 55 5-1-2 Sagnac 迴路感測理論分析 58 5-2 感測系統元組件基本原理 59 5-2-1極化保持光纖 59 5-2-2 光纖極化控制器 61 5-3 Sagnac 迴路溫度感測系統 62 5-3-1 Sagnac 迴路溫度感測系統架構 62 5-3-2 Sagnac 迴路溫度感測系統實驗結果 63 5-4 本章小結 70 第六章 結論與未來展望 72 6-1 結論 72 6-2 未來展望 74 參考文獻 75

    [1] 廖顯奎譯,“光纖通訊”,高立圖書有限公司,2005。
    [2] 林來誠,“光纖光柵製作與應用”,光連雙月刊,第6 期,財團法人光電科技工業協進會,1996。
    [3] 董德國,陳萬清譯,“光纖通訊”,台灣東華書局股份有限公司,2000。
    [4] 王順民,“光纖光柵多工應變感測系統之製作與研究”,國立清華大學電機工程研究所碩士論文,2004。
    [5] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [6] C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry–Perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors Journal, vol. 12, no. 1, pp. 17-21, 2012.
    [7] 安毓英,曾小東,“光學感測與測量”,五南圖書出版股份有限公司,2004。
    [8] M. R. Mokhtar, T. Sun, and K. T. V. Grattan, “Bragg grating packages with nonuniform dimensions for strain and temperature sensing,” IEEE Sensors Journal, vol. 12, no. 1, pp. 139-144, 2012.
    [9] T. Chen, M. Maklad, P. R. Swinehart, and K. P. Chen, “Self-heated optical fiber sensor array for cryogenic fluid level sensing,” IEEE Sensors Journal, vol. 11, no. 4, pp. 1051-1052, 2011.
    [10] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [11] B. Dong, J. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Applied Optics, vol. 49, no. 32, pp. 6232-6235, 2010.
    [12] 黃立文,“光纖光柵製作與應用(二)”,光連雙月刊,第10 期,財團法人光電科技工業協進會,1997。
    [13] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [14] 畢衛紅,張闖,“光纖Bragg光柵的反射特性研究”,傳感器技術,第22 期, 第8 卷,2003。
    [15] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [16] 王俊容,“光纖光柵與光循環器組成之光纖雷射:研製與應用”,台灣科技大學電子工程研究所碩士論文,2005。
    [17] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol. 14, no. 15, pp.823-825, 1989.
    [18] 陳宣臣,“波長可調光纖光柵之研製與應用”,台灣科技大學電子工程研究所碩士論文,2004。
    [19] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [20] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002。
    [21] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005。
    [22] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [23] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
    [24] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” Journal of Lightwave Technology, vol.9, pp. 271-283, 1991.
    [25] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, 2012.
    [26] 廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,國立台灣科技大學電子工程研究所碩士論文,2004。
    [27] J. Hecht, “Understanding fiber optics, 4th Ed.,” Prentice Hall, 2002.
    [28] A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Frieble, “Fiber grating sensor,” Journal of Lightwave Technology, vol. 15, pp. 1442-1463, 1997.
    [29] A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Optical Fiber Technology, vol. 2, pp. 291-317, 1996.
    [30] H. Chen, F. Babin, M. Leblance, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 185-187, 2003.
    [31] J. W. Goodman, “Fiber optic smart structures,” John Wiley & Sons, 1995.
    [32] 葉天傑,“外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測”, 國立台灣大學機械工程研究所碩士論文,2002。
    [33] J. F. Nye, “Physical properties of crystals:their presentation by tensors and matrices,” Oxford University Press, 1957.
    [34] F. Yu and S. Yin, “Fiber optic sensors,” New York, Marcel Dekker, 2002.
    [35] L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Optical Fiber Technology, vol. 3, pp. 78-80, 2007.
    [36] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehard, “Analytical model for rare-earth-doped fiber amplifier and lasers,” IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
    [37] Q. Mao and J. W. Y. Lit, “Multi-wavelength erbium-doped fiber laser with active overlapping linear cavities,” Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
    [38] S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, 2004.
    [39] S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Lett., vol. 3, pp. 369-371, 2006.
    [40] S. K. Liaw, W. Y. Jang, C. J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, pp. 2280-2282, 2007.
    [41] D. B. Mortimore, “Fiber loop reflectors,” Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, 1988.
    [42] M. L. Filograno, P. C. Guillen, A. Rodriguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andres-Alguacil, and M. Gonzalez-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sensors Journal, vol. 12, no. 1, 2012.
    [43] D. K. Mynbaev and L. L. Scheiner, “Fibre Optic Communications Technology,” Prentice-Hall, 2000.
    [44] A. Bilenca and G. Eisenstein, “Statistical noise properties of an optical pulse propagating in a nonlinear semiconductor optical amplifier,” IEEE Journal of Quantum Electronics, vol. 41, no. 1, pp. 36-38, 2005.
    [45] G. P. Agrawal, N. K. Dutta, “Long-wavelength semiconductor lasers,” New York: Van Nostrand Reinhold, 1986.
    [46] M. J. Connelly, “Semiconductor optical amplifiers,” Kluwer Academic Publishers, 2002.
    [47] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, 1998.
    [48] Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 16, no. 10, pp. 1047-1052, 1980.
    [49] Y. Yamamoto, “Coherence Amplification and Quantum Effect in Semiconductor Lasers,” Wiley, 1991.
    [50] D. Liu, N. Q. Ngo, H. Liu, and D. Liu, “Stable multi-wavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier,” Optics Communications, vol. 282, no. 8, pp. 1598-1601, 2009.
    [51] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
    [52] 廖顯奎,鄭旭志,江家慶,林淑娟,“光纖原理與應用技術”,五南圖書出版有限公司,2012。
    [53] D. M. Liang, X. F. Xu, Y. Li, J. H. Pei, Y. Jiang, Z. H. Kang, and J. Y. Gao, “Multi-wavelength fiber laser based on a high-birefringence fiber loop mirror,” Laser Physics Letters., vol. 4, no. 1, pp. 57-60, 2007.
    [54] J. Zhang, X. Qiao, T. Guo, Y. Weng, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer,” Journal of Lightwave Technology, vol. 29, no. 24, 2011.
    [55] D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Optics Express, vol. 12, no. 19, 2004.
    [56] 蔡承全,“以半導體光放大器為增益介質之線性共振腔多波長可條光纖雷射”,國立台灣科技大學電子工程研究所碩士論文,2011。
    [57] T. Okoshi, “Single-polarization single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. QE-17, no. 6, pp. 879-884, 1981.
    [58] M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Optical and Quantum Electronics, vol. 12, no. 6, pp. 449-461, 1980.
    [59] R. Ulrich, S. Rashleigh, and W. Eickhoff, “Bending induced birefringence in single mode fibres,” Optics Letters, vol. 5, no. 6, pp. 273–275, 1980.
    [60] O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fibre loop mirror sensors,” Sensors, vol. 7, no. 11, pp. 2970-2983, 2007.
    [61] D. Derickson, “Fiber Optic Test and Measurement,” Prentice Hall, 1998.
    [62] J. H. Franz, V. K. Jain, “Optical communication components and systems,” Alpha Science International Ltd., 2000.

    QR CODE