簡易檢索 / 詳目顯示

研究生: Agaje Bedemo Beyene
Agaje Bedemo Beyene
論文名稱: Fabrication and assemblage of plasmonic nanoparticles: approaches to design highly uniform and sensitive SERS substrates and applications in biomedical science
Fabrication and assemblage of plasmonic nanoparticles: approaches to design highly uniform and sensitive SERS substrates and applications in biomedical science
指導教授: 蘇威年
Wei-Nien Su
蔡協致
Hsieh-Chih Tsai
口試委員: Hsisheng Teng
Hsisheng Teng
Di-Yan Wang
Di-Yan Wang
Ching-Hsiang Chen
Ching-Hsiang Chen
Bing Joe Hwang
Bing Joe Hwang
Wei-Nien Su
Wei-Nien Su
Hsieh-Chih Tsai
Hsieh-Chih Tsai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 156
中文關鍵詞: SERS mappinggold nanoflowersilver nanoparticle arrayelectrophoretic depositionin-situ nanoparticle synthesispancreatic cancer marker MUC4SERS-based bacterial detection
外文關鍵詞: SERS mapping, gold nanoflower, silver nanoparticle array, electrophoretic deposition, in-situ nanoparticle synthesis, pancreatic cancer marker MUC4, SERS-based bacterial detection
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Surface-enhanced Raman scattering (SERS) is an extremely sensitive analytical tool with the detection limit ranging down to a single molecule. Moreover, SERS is a minimally invasive analytical technique that involves little or no sample preparation and has high molecular specificity. Interestingly, in recent years, the miniaturization of Raman instrumentation down to smartphone size has proved its suitability for point-of-care. Owing to these attractive features, SERS has become a promising analytical technique for rapid and accurate disease detection in recent years. Excellent uniformity and sensitivity of SERS substrates are the two key requirements to get reproducible and reliable signals from a probe. The assemblage of nanoparticles into ordered 2D and 3D arrays and thereby engineering SERS hotspots is the main strategy in designing highly uniform and ultrasensitive SERS substrates. Ultra-uniform SERS substrates can be produced using top-down nanofabrication technologies such as high-resolution electron-beam lithography. However, such top-down methods involve highly expensive and sophisticated techniques that need a tightly controlled environment. Moreover, the yield from such methods is extremely low that these methods are not suitable for mass production of low-cost SERS substrates for routine analysis. As a result, cost-effective and facile fabrication of highly sensitive and uniform SERS substrates is at the center of the practical aspect of SERS-related researches. In this thesis, three different approaches are presented to fabricate highly uniform and sensitive SES substrates and applied for cancer and bacterial detections.
In the first approach, methods to improve the reliability and sensitivity of SERS-based sandwich immunoassay have been described. AuNF was used to design both extrinsic Raman label and capture surface and thereby to improve detection sensitivity. First, a highly uniform capture surface was designed by self-assembly of gold nanoflower (AuNF) onto a thiol-functionalized silicon wafer. Then, AuNF-based SERS immunoassay was carried out for the detection of pancreatic cancer marker MUC4 by tagging it with extrinsic Raman label constructed with AuNF, Raman reporter molecule and anti-MUC4 antibody. In addition to designing uniform SERS substrate, we employed Raman mapping over a large area to minimize the effect of spot-to-spot SERS signal variation. Furthermore, the use of a microwell plate for incubation of capture substrate minimized false positive error significantly. The designed method is sensitive enough to detect MUC4 down to 0.1 ng mL-1.
In the second approach, a SERS substrate with excellent uniformity and sensitivity has been designed by simple electrophoretic deposition of gold nanoflowers onto acid-etched Al-foil and into nanopores of anodized aluminum oxide (AAO). The SEM image and SERS mapping measurement over quite a large area confirmed the excellent uniformity of the substrates. Interestingly, the capping agent used to control the surface charge of nanoparticle can be wisely chosen so that it will also function as a linker molecule to capture a substance of interest onto the substrate. As aluminum has surface Plasmon property, LSPR coupling of gold nanoflowers with anodized aluminum nanoporous structure contributed about one order of magnitude to the overall enhancement compared to that of the silicon wafer.
In the last approach, a novel simplest ever method for fabrication of ultrasensitive and highly uniform SERS substrate and its application for label-free bacterial detection has been proposed. The idea of galvanic replacement reaction in combination with a seed-mediated particle-growth approach in the presence of hydroquinone has been employed, and Ag nanoparticle array was fabricated on Cu-foil in less than 3 min. Label-free detection of bacterial species has shown that the substrate is superior to highly acclaimed SERS substrates such as silver nanocubes. In contrast to most reported SERS detection of pathogens, the detection of bacteria was carried out by directly probing liquid samples. Interestingly, direct liquid bacteria sample analysis showed six-fold higher detection sensitivity than that of completely dried samples.

Abstract…………………………………………………………………………………………….i Acknowledgement………………………………………………………………………………...v List of acronyms………………………………………………………………………………….xi List of figures………………………………………………………………………………….....xv List of tables……………………………………………………………………………………..xxi Chapter 1 Introduction .................................................................................................................................. 1 1.1. Background and rationale of the study .................................................................................................. 1 1.2. Objective of the study ............................................................................................................................ 4 Chapter 2 Literature Review on surface-enhanced Raman spectroscopy ..................................................... 5 2.1. Raman spectroscopy .............................................................................................................................. 5 2.1.1. Basics of Raman spectroscopy and related techniques .............................................................. 5 2.1.2. Raman instrumentation .............................................................................................................. 8 2.1.3. Raman active molecular vibrations ............................................................................................. 9 2.1.4. Laser wavelength selection ....................................................................................................... 13 2.2. Basics of surface-enhanced Raman spectroscopy (SERS) ................................................................... 14 2.2.1. Historical background and prominent advances in SERS .......................................................... 14 2.2.2. Enhancement mechanisms of SERS .......................................................................................... 16 2.2.3. SERS enhancement factor (EF) .................................................................................................. 20 2.2.4. SERS probes and SERS tags ....................................................................................................... 21 2.3. SERS substrate fabrication .................................................................................................................. 22 2.3.1. Materials for SERS substrate fabrication .................................................................................. 23 2.3.2. Top-down methods of SERS substrate fabrication ................................................................... 24 2.3.3. Bottom-up methods of SERS substrate fabrication .................................................................. 26 2.3.4 Shape and size-controlled synthesis of nanoparticles ............................................................... 27 2.3.5. Core-shell nanoparticles ........................................................................................................... 29 2.3.6. Assembled nanoparticles .......................................................................................................... 30 2.4. SERS for cancer detection ................................................................................................................... 36 viii 2.4.1. Cancer: general information, risk factors and symptoms ......................................................... 36 2.4.2. Biomarkers for SERS-based cancer detection ........................................................................... 38 2.5. SERS for bacterial detection ................................................................................................................ 39 Chapter 3 Experimental section .................................................................................................................. 41 3.1. Chemicals and materials ...................................................................................................................... 41 3.2. Fabrication of plasmonic nanoparticles ............................................................................................... 42 3.2.1. Synthesis and optimization of gold nanoflower (AuNF) ........................................................... 42 3.2.2. Synthesis of gold nanobipyramids (AuNB) ................................................................................ 42 3.2.3. Synthesis of silver nanocube (AgNC) ........................................................................................ 43 3.2.4. In situ synthesis of gold nanoparticles (AuNPs) on PEI modified filter paper .......................... 44 3.2.5. Fabrication of Ag nanoparticle array on Cu-foil (Cu/AgNP) ...................................................... 44 3.3. Thiol functionalization of silicon wafer and immobilization of AuNF ............................................... 45 3.4. Anodization of Al-foil and electrophoretic deposition of AuNF ......................................................... 46 3.5. Preparation of extrinsic Raman label (ERL) for sandwich immunoassay ........................................... 48 3.6. Preparation of capture surface and sandwich immunoassay procedures ............................................. 48 3.7. Bacteria sample preparation ................................................................................................................. 49 3.8. Characterizations .................................................................................................................................. 49 3.9. SERS measurements ............................................................................................................................ 50 Chapter 4 Detection of pancreatic cancer by AuNF-based SERS mapping immunoassay......................... 51 4.1. Scope of the study ................................................................................................................................ 51 4.2. Synthesis, characterization and SERS performance test of AuNFs ..................................................... 52 4.3. Quantitative estimation Raman reporter molecule (RRM) .................................................................. 57 4.4. Capture surface and experimental setup for sandwich immunoassay .................................................. 58 4.5. Incubation of capture substrates using micro-well plate ...................................................................... 60 4.6. SERS mapping for detection of MUC4 ............................................................................................... 62 4.7. Summary .............................................................................................................................................. 68 Chapter 5 Designing highly uniform SERS substrate by simple electrophoretic deposition of AuNF onto Al-foil .......................................................................................................................................................... 69 5.1. Scope of the study ................................................................................................................................ 69 ix 5.2. Anodization of Al-foil in sulfuric acid and oxalic acid ........................................................................ 70 5.3. Internalizing gold nanoflowers into nanopores of AAO ...................................................................... 73 5.4. Electrophoretic deposition of AuNF onto etched smooth Al-foil ........................................................ 77 5.5. Summary .............................................................................................................................................. 80 Chapter 6 Facile fabrication of ultrasensitive and uniform SERS substrate (Cu/AgNP) and rapid bacterial detection ...................................................................................................................................................... 83 6.1. Scope of the study ................................................................................................................................ 83 6.2. In situ fabrication of silver nanoparticle array on copper-foil (Cu/AgNP) .......................................... 85 6.3. Optimization of reaction conditions for fabrication of Cu/AgNP ........................................................ 88 6.4. Label-free fast detection of bacteria using Cu/AgNP .......................................................................... 95 6.4.1. SERS detection of liquid bacteria sample directly .................................................................... 95 6.4.2. Differentiation of S. aureus and V. parahaemolyticus bacteria species ................................... 98 6.4.3. Concentration dependence of bacterial SERS spectra ............................................................ 101 6.4.4. Comparison Cu/AgNP with other substrates for bacterial detection ..................................... 102 6.5. Comparison of Cu/AgNP with reported works on S. aureus detection .............................................. 105 6.6. Summary ............................................................................................................................................ 106 Chapter 7 Conclusion and perspectives .................................................................................................... 109 7.1. Conclusion ......................................................................................................................................... 109 7.2. Perspectives........................................................................................................................................ 111 References………………………………………………………………………………………115 Appendix: ....................................................................................................................................156

1.Zong, C.; Xu, M.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B., Surface-
Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev
2018, 118 (10), 4946-4980.
2. Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J., Recent progress in surface-enhanced
Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem
Soc Rev 2017, 46 (13), 3945-3961.
3. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2019. CA Cancer J Clin 2019, 69
(1), 7-34.
4. Llovet, J. M.; Kelley, R. K.; Villanueva, A.; Singal, A. G.; Pikarsky, E.; Roayaie, S.;
Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R. S., Hepatocellular carcinoma. Nat Rev
Dis Primers 2021, 7 (1), 6.
5. Stein, C. J.; Colditz, G. A., Modifiable risk factors for cancer. Br J Cancer 2004, 90 (2),
299-303.
6. Gold, E. B.; Gordis, L.; Diener, M. D.; Seltser, R.; Boitnott, J. K.; Bynum, T. E.;
Hutcheon, D. F., Diet and Other Risk Factors for Cancer of the Pancreas. Cancer 1985, 55
460-467.
7. Wu, S.; Powers, S.; Zhu, W.; Hannun, Y. A., Substantial contribution of extrinsic risk
factors to cancer development. Nature 2016, 529 (7584), 43-7.
8. Tarin, D., Cell and tissue interactions in carcinogenesis and metastasis and their clinical
significance. Semin Cancer Biol 2011, 21 (2), 72-82.
9. Seyfried, T. N.; Huysentruyt, L. C., On the Origin of Cancer Metastasis. Rev Oncog. 2013,
18 (1-2), 43-73.
116
10. Bacac, M.; Stamenkovic, I., Metastatic cancer cell. Annu Rev Pathol 2008, 3, 221-47.
11. Joyce, J. A.; Pollard, J. W., Microenvironmental regulation of metastasis. Nat Rev Cancer
2009, 9 (4), 239-52.
12. Bai, X. R.; Wang, L. H.; Ren, J. Q.; Bai, X. W.; Zeng, L. W.; Shen, A. G.; Hu, J. M.,
Accurate Clinical Diagnosis of Liver Cancer Based on Simultaneous Detection of Ternary
Specific Antigens by Magnetic Induced Mixing Surface-Enhanced Raman Scattering
Emissions. Anal Chem 2019, 91 (4), 2955-2963.
13. Miller, K. D.; Nogueira, L.; Mariotto, A. B.; Rowland, J. H.; Yabroff, K. R.; Alfano, C.
M.; Jemal, A.; Kramer, J. L.; Siegel, R. L., Cancer treatment and survivorship statistics,
2019. CA Cancer J Clin 2019, 69 (5), 363-385.
14. Ho, C. S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei,
N.; Saleh, A. A. E.; Ermon, S.; Dionne, J., Rapid identification of pathogenic bacteria
using Raman spectroscopy and deep learning. Nat Commun 2019, 10 (1), 4927.
15. Fleischmann, C.; Scherag, A.; Adhikari, N. K. J.; Hartog, C. S.; Tsaganos, T.;
Schlattmann, P.; Angus, D. C.; Reinhart, K., Assessment of global incidence and mortality
of hospital-treated sepsis –Current estimates and limitations. Am. J. Respir. Crit. Care Med.
2016, 193 259-272.
16. DeAntonio, R.; Yarzabal, J. P.; Cruz, J. P.; Schmidt, J. E.; Kleijnen, J., Epidemiology of
community-acquired pneumonia and implications for vaccination of children living in
developing and newly industrialized countries: A systematic literature review. Hum Vaccin
Immunother 2016, 12 (9), 2422-40.
17. Whitman, W. B.; Coleman, D. C.; Wiebe, W. J., Prokaryotes: The unseen majority. Proc.
Natl. Acad. Sci. USA 1998, 95, 6578–6583.
117
18. McConnell, E. M.; Morrison, D.; Rey Rincon, M. A.; Salena, B. J.; Li, Y., Selection and
applications of synthetic functional DNAs for bacterial detection. TrAC Trends in
Analytical Chemistry 2020, 124, 115785.
19. Neu, H. C., The Crisis in Antibiotic Resistance. SCIENCE 1992, 257, 1064-1073.
20. Uysal Ciloglu, F.; Saridag, A. M.; Kilic, I. H.; Tokmakci, M.; Kahraman, M.; Aydin, O.,
Identification of methicillin-resistant Staphylococcus aureus bacteria using surfaceenhanced
Raman spectroscopy and machine learning techniques. Analyst 2020, 145 (23),
7559-7570.
21. Zhou, X.; Hu, Z.; Yang, D.; Xie, S.; Jiang, Z.; Niessner, R.; Haisch, C.; Zhou, H.; Sun,
P., Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. Adv
Sci (Weinh) 2020, 7 (23), 2001739.
22. Koo, K. M.; Wee, E. J.; Mainwaring, P. N.; Wang, Y.; Trau, M., Toward Precision
Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor
and Urine. Small 2016, 12 (45), 6233-6242.
23. Pile, D., Phone sensing. Nature Photonics 2014, 8 (3), 168-168.
24. Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang,
W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; de la Fuente, J. M.; Chen, D.; Cui, D.,
Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early
and Advanced Gastric Cancer Patients from Healthy Persons. ACS Nano 2016, 10 (9),
8169-79.
25. Koo, K. M.; Wang, J.; Richards, R. S.; Farrell, A.; Yaxley, J. W.; Samaratunga, H.;
Teloken, P. E.; Roberts, M. J.; Coughlin, G. D.; Lavin, M. F.; Mainwaring, P. N.; Wang,
Y.; Gardiner, R. A.; Trau, M., Design and Clinical Verification of Surface-Enhanced
118
Raman Spectroscopy Diagnostic Technology for Individual Cancer Risk Prediction. ACS
Nano 2018, 12 (8), 8362-8371.
26. Xiao, R.; Lu, L.; Rong, Z.; Wang, C.; Peng, Y.; Wang, F.; Wang, J.; Sun, M.; Dong, J.;
Wang, D.; Wang, L.; Sun, N.; Wang, S., Portable and multiplexed lateral flow
immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens
Bioelectron 2020, 168, 112524.
27. Kim, N.; Thomas, M. R.; Bergholt, M. S.; Pence, I. J.; Seong, H.; Charchar, P.;
Todorova, N.; Nagelkerke, A.; Belessiotis-Richards, A.; Payne, D. J.; Gelmi, A.;
Yarovsky, I.; Stevens, M. M., Surface enhanced Raman scattering artificial nose for high
dimensionality fingerprinting. Nat Commun 2020, 11 (1), 207.
28. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A., Flexible Electronics toward Wearable
Sensing. Acc Chem Res 2019, 52 (3), 523-533.
29. Smith, E.; Dent, G., Modern Raman Spectroscopy-A Practical Approach. John Wiley &
Sons Ltd: England, 2005.
30. M. Fleischmann, P. J. H., and A. J. Mcquillan, Raman Spectra of Pyridine Adsorbed at
Silver Electrode. Chem. phys. lett. 1974, 26 (2), 163-166.
31. Jeanmaire, D. L.; Duyne, R. P. V., Surface raman spectroelectrochemistry Part I.
Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J.
Electr. Chem 1977, 84 (1), 1-20.
32. Albrecht, M. G.; Creighton, J. A., Anomalously Intense Raman Spectra of Pyridine at a
Silver Electrode. J. Am. Chem. Soc. 1977, 99 (15), 5215-5217.
33. A. Campion, a. P. K., Surface-enhanced Raman scattering. Chem Rev 1998, 27, 241-250.
119
34. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P., Surface-enhanced Raman
spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 2008, 1, 601-26.
35. Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.;
Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-
May, D.; Deckert, V.; Fabris, L.; Faulds, K.; Garcia de Abajo, F. J.; Goodacre, R.;
Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Kall, M.; Kneipp, J.; Kotov,
N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J. F.; Ling, X. Y.; Maier, S. A.;
Mayerhofer, T.; Moskovits, M.; Murakoshi, K.; Nam, J. M.; Nie, S.; Ozaki, Y.;
Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G.
C.; Shegai, T.; Schlucker, S.; Tay, L. L.; Thomas, K. G.; Tian, Z. Q.; Van Duyne, R. P.;
Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.;
Zhao, B.; Liz-Marzan, L. M., Present and Future of Surface-Enhanced Raman Scattering.
ACS Nano 2020, 14 (1), 28-117.
36. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M., Electromagnetic theories of surfaceenhanced
Raman spectroscopy. Chem Soc Rev 2017, 46 (13), 4042-4076.
37. A. Campion, J. E. I., C. M. Child, and M. Foster On the Mechanism of Chemical
Enhancement in. J. Am. Chem. Soc. 1995, (117), 11807-11808.
38. Nayak, S.; Blumenfeld, N. R.; Laksanasopin, T.; Sia, S. K., Point-of-Care Diagnostics:
Recent Developments in a Connected Age. Anal Chem 2017, 89 (1), 102-123.
39. Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S. K.; Krasnoslobodtsev, A. V., Surface-
Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease
Biomarkers. Biosensors (Basel) 2017, 7 (7), 1-21.
120
40. Jamieson, L. E.; Asiala, S. M.; Gracie, K.; Faulds, K.; Graham, D., Bioanalytical
Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. Annu Rev
Anal Chem (Palo Alto Calif) 2017, 10 (1), 415-437.
41. Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtulus, O.; Lee, S. H.;
Lindquist, N. C.; Oh, S. H.; Haynes, C. L., Recent progress in SERS biosensing. Phys
Chem Chem Phys 2011, 13 (24), 11551-67.
42. Moore, T. J.; Moody, A. S.; Payne, T. D.; Sarabia, G. M.; Daniel, A. R.; Sharma, B., In
Vitro and In Vivo SERS Biosensing for Disease Diagnosis. Biosensors (Basel) 2018, 8
(46), 1-25.
43. Kahraman, M.; Mullen, E. R.; Korkmaz, A.; Wachsmann-Hogiu, S., Fundamentals and
applications of SERS-based bioanalytical sensing. Nanophotonics 2017, 6 (5), 831-852.
44. Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D.
Y.; Tian, Z. Q., Surface-enhanced Raman spectroscopy: bottlenecks and future directions.
Chem Commun (Camb) 2017, 54 (1), 10-25.
45. Yu, H. D.; Regulacio, M. D.; Ye, E.; Han, M. Y., Chemical routes to top-down
nanofabrication. Chem Soc Rev 2013, 42 (14), 6006-18.
46. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials,
applications, and the future. Materials Today 2012, 15 (1-2), 16-25.
47. Montes-Garcia, V.; Squillaci, M. A.; Diez-Castellnou, M.; Ong, Q. K.; Stellacci, F.;
Samori, P., Chemical sensing with Au and Ag nanoparticles. Chem Soc Rev 2021, 50 (2),
1269-1304.
48. Hess, C., New advances in using Raman spectroscopy for the characterization of catalysts
and catalytic reactions. Chem Soc Rev 2021, 50 (5), 3519-3564.
121
49. Liu, X.; Swihart, M. T., Heavily-doped colloidal semiconductor and metal oxide
nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 2014, 43
(11), 3908-20.
50. Lin, J.; Liang, L.; Ling, X.; Zhang, S.; Mao, N.; Zhang, N.; Sumpter, B. G.; Meunier,
V.; Tong, L.; Zhang, J., Enhanced Raman Scattering on In-Plane Anisotropic Layered
Materials. J Am Chem Soc 2015, 137 (49), 15511-7.
51. Chen, M.; Liu, D.; Du, X.; Lo, K. H.; Wang, S.; Zhou, B.; Pan, H., 2D materials:
Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing
and biosensing. TrAC Trends in Analytical Chemistry 2020, 130, 115983.
52. Morales-Narvaez, E.; Merkoci, A., Graphene Oxide as an Optical Biosensing Platform: A
Progress Report. Adv Mater 2019, 31 (6), 1805043.
53. RU, E. C. L.; ETCHEGOIN, P. G., Principles of Surface-Enhanced Raman Spectroscopy
and related plasmonic effects. Elsevier B.V.: Great Britain, 2009.
54. Overview of Spectroscopy. https://www.gamry.com/Framework%20Help/HTML5%20-
%20Tripane%20-
%20Audience%20A/Content/SE/Introduction/Overview%20of%20Spectroscopy.htm
(accessed May 23, 2021).
55. McCreery, R. L., Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc:
Canada, 2000; p 15-33.
56. Li, Z.; Deen, M. J.; Kumar, S.; Selvaganapathy, P. R., Raman spectroscopy for in-line
water quality monitoring--instrumentation and potential. Sensors (Basel) 2014, 14 (9),
17275-303.
57. Raman, C. V., A new type of Radiation. Indian J Phys 1928, 2, 387-389.
122
58. Menzies, A. C., The Raman effect. nature 1930, 123 (3145).
59. Stockburger, P. H. a. M., Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine
6G Adsorbed on Colloidal Silver. J. Phys. Chem. B 1984, 88, 5935-5944.
60. Stockburge, P. H. a. M., Surface-Enhanced Resonance Raman Spectroscopy of Cytochrome
c at Room and Low Temperatures. J. Phys. Chem. B 1986, 90 6017-6024.
61. Harmsen, S.; Huang, R.; Wall, M. A.; Karabeber, H.; Samii, J. M.; Spaliviero, M.;
White, J. R.; Monette, S.; O’Connor, R.; Pitter, K. L.; Sastra, S. A.; Saborowski, M.;
Holland, E. C.; Singer, S.; Olive, K. P.; Lowe, S. W.; Blasberg, R. G.; Kircher, M. F.,
Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging.
Sci Transl Med 2015, 7 (271), 1-11.
62. Efremov, E. V.; Ariese, F.; Gooijer, C., Achievements in resonance Raman spectroscopy
review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 2008,
606 (2), 119-34.
63. Spiro, T. G.; Czernuszewicz, R. S.; Li, X.-Y., Metalloporphyrin structure and dynamics
from resonance Raman spectroscopy. Coordination Chemistry Reuiews 1990, 100, 541-571.
64. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. Angew Chem
Int. Ed. Engl 1986, 25, 131-158.
65. Sun, D.; Xu, W.; Liang, C.; Shi, W.; Xu, S., Smart Surface-Enhanced Resonance Raman
Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during
Osteogenic Differentiation. ACS Sens 2020, 5 (6), 1758-1767.
66. Asher, S. A., UV resonance Raman spectroscopy for analytical, physical, and biophysical
chemistry. Part 2. Analytical Chemistry 2008, 65 (4), 201A-210A.
123
67. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a Substrate To Suppress
Fluorescence in Resonance Raman Spectroscopy. J. AM. CHEM. SOC. 2009, 131 (29),
9890-9891.
68. Zhou, Y.; Liu, C. H.; Sun, Y.; Pu, Y.; Boydston-White, S.; Liu, Y.; Alfano, R. R.,
Human brain cancer studied by resonance Raman spectroscopy. J Biomed Opt 2012, 17
(11), 116021.
69. McCREERY, R. L., Raman Spectroscopy for C hemic al Analysis. John Wiley & Sons, Inc:
the United States of America, 2000.
70. Yamakita, Y.; Isogai, Y.; Ohno, K., Large Raman-scattering activities for the lowfrequency
modes of substituted benzenes: induced polarizability and stereo-specific ringsubstituent
interactions. J Chem Phys 2006, 124 (10), 104301.
71. Barron, L. D.; Clark, B. P., The bond polarizability theory of Raman optical activity
calculations on (R) - (+) bromochlorofluoromethane. Molecular Physics 2006, 46 (4), 839-
851.
72. Raman Spectroscopy for Analysis and Monitoring.
https://static.horiba.com/fileadmin/Horiba/Technology/Measurement_Techniques/Molecula
r_Spectroscopy/Raman_Spectroscopy/Raman_Academy/Raman_Tutorial/Raman_bands.pd
f (accessed 29 June 2021).
73. Hara, R.; Ishigaki, M.; Kitahama, Y.; Ozaki, Y.; Genkawa, T., Excitation wavelength
selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.
Food Chem 2018, 258, 308-313.
124
74. Zeiri, L.; Efrima, S., Surface-enhanced Raman spectroscopy of bacteria: the effect of
excitation wavelength and chemical modification of the colloidal milieu. Journal of Raman
Spectroscopy 2005, 36 (6-7), 667-675.
75. Beattie, J. R.; Brockbank, S.; McGarvey, J. J.; Curry, W. J., Effect of excitation
wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area
centralis. Molecular Vision 2005, 11, 825-832.
76. Kerr, L. T.; Byrne, H. J.; Hennelly, B. M., Optimal choice of sample substrate and laser
wavelength for Raman spectroscopic analysis of biological specimen. Analytical Methods
2015, 7 (12), 5041-5052.
77. Raman: Wavelength Matters. https://wasatchphotonics.com/technologies/ramanspectroscopy-
wavelength-matters/ (accessed 29 June 2021).
78. How to Choose a Laser: How to choose a laser for Raman spectroscopy.
https://www.laserfocusworld.com/lasers-sources/article/16555207/how-to-choose-a-laserhow-
to-choose-a-laser-for-raman-spectroscopy (accessed 29June 2021).
79. Principles of Raman Spectroscopy. https://www.jasco-global.com/principle/principles-oframan-
spectroscopy-6-raman-spectroscopy-faq-equipment-related-2/ (accessed 29 June
2021).
80. Deschaines, T. O.; Wieboldt, D., Practical Applications of Surface-Enhanced Raman
Scattering (SERS). Thermo Fisher Scientific, Madison, WI, USA 2010, 1-4.
81. McQuillan, A. J., The discovery of surface-enhanced Raman scattering. Notes and Records
of the Royal Society 2009, 63 (1), 105-109.
82. Alessandri, I.; Lombardi, J. R., Enhanced Raman Scattering with Dielectrics. Chem Rev
2016, 116 (24), 14921-14981.
125
83. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S.,
Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev.
Lett. 1997, 78 (9), 1667-1670.
84. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-
Enhanced Raman Scattering. SCIENCE 1997, 275 (5303 ), 1102-1106.
85. Camden, J. P., Probing the Structure of Single-Molecule Surface-Enhanced Raman
Scattering Hot Spots. J. AM. CHEM. SOC. 2008, (130), 12616–12617.
86. Zrimsek, A. B., Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman
Spectroscopy. Chem. Rev. 2017, (117 ), 7583−7613.
87. Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao,
Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G., Chemical mapping of a single molecule
by plasmon-enhanced Raman scattering. Nature 2013, 498 (7452), 82-6.
88. Zong, C.; Premasiri, R.; Lin, H.; Huang, Y.; Zhang, C.; Yang, C.; Ren, B.; Ziegler, L.
D.; Cheng, J. X., Plasmon-enhanced stimulated Raman scattering microscopy with singlemolecule
detection sensitivity. Nat Commun 2019, 10 (1), 5318.
89. Pozzi, E. A.; Goubert, G.; Chiang, N.; Jiang, N.; Chapman, C. T.; McAnally, M. O.;
Henry, A. I.; Seideman, T.; Schatz, G. C.; Hersam, M. C.; Duyne, R. P. V., Ultrahigh-
Vacuum Tip-Enhanced Raman Spectroscopy. Chem Rev 2017, 117 (7), 4961-4982.
90. Sto¨ckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R., Nanoscale chemical analysis by tipenhanced
Raman spectroscopy. Chem. Phys. Lett. 2000, 318, 131-136.
91. Anderson, M. S., Locally enhanced Raman spectroscopy with an atomic force microscope.
Applied Physics Letters 2000, 76 (21), 3130-3132.
126
92. Jiang, S.; Zhang, Y.; Zhang, R.; Hu, C.; Liao, M.; Luo, Y.; Yang, J.; Dong, Z.; Hou, J.
G., Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman
scattering. Nat Nanotechnol 2015, 10 (10), 865-9.
93. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q., Core-Shell
Nanoparticle-Enhanced Raman Spectroscopy. Chem Rev 2017, 117 (7), 5002-5069.
94. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang,
W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolated
nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464 (7287), 392-5.
95. Gersten, J.; Nitzan, A., Electromagnetic theory of enhanced Raman scattering by molecules
adsorbed on rough surfaces. J. Chem. Phys. 1980, 73 (7), 3023-3037.
96. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by
molecules adsorbed on metals. J. Chem. Phys. 1978, 69 (9), 4159-4161.
97. Lombardi, J. R.; Birke, R. L., On the chemical mechanism of surface enhanced Raman
scattering: Experiment and theory. J Chem Phys 2012, 136 (14), 144704.
98. Tegegne, W. A.; Su, W.-N.; Tsai, M.-C.; Beyene, A. B.; Hwang, B.-J., Ag nanocubes
decorated 1T-MoS2 nanosheets SERS substrate for reliable and ultrasensitive detection of
pesticides. Applied Materials Today 2020, 21, 100871.
99. Mekonnen, M. L.; Chen, C. H.; Osada, M.; Su, W. N.; Hwang, B. J., Dielectric nanosheet
modified plasmonic-paper as highly sensitive and stable SERS substrate and its application
for pesticides detection. Spectrochim Acta A Mol Biomol Spectrosc 2020, 225, 117484.
100. Reguera, J.; Langer, J.; Jimenez de Aberasturi, D.; Liz-Marzan, L. M., Anisotropic metal
nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 2017, 46 (13), 3866-
3885.
127
101. Sharma, B.; Fernanda Cardinal, M.; Kleinman, S. L.; Greeneltch, N. G.; Frontiera, R. R.;
Blaber, M. G.; Schatz, G. C.; Van Duyne, R. P., High-performance SERS substrates:
Advances and challenges. MRS Bulletin 2013, 38 (8), 615-624.
102. Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P.,
Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem
Phys 2013, 15 (1), 21-36.
103. Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.; Lay, C. L.; Sim, H.
Y. F.; Kao, Y. C.; An, Q.; Ling, X. Y., Designing surface-enhanced Raman scattering
(SERS) platforms beyond hotspot engineering: emerging opportunities in analyte
manipulations and hybrid materials. Chem Soc Rev 2019, 48 (3), 731-756.
104. A. D. McFarland, M. A. Y., J. A. Dieringer and R. P. Van Duyne, Wavelength-Scanned
Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2005, (109), 11279-
11285.
105. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Duyne, R. P. V., Nanosphere Lithography:
Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys.
Chem. B 2000, 104, 10549-10556.
106. Valley, N.; Greeneltch, N.; Van Duyne, R. P.; Schatz, G. C., A Look at the Origin and
Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-
Enhanced Raman Spectroscopy (SERS): Theory and Experiment. The Journal of Physical
Chemistry Letters 2013, 4 (16), 2599-2604.
107. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys. 57 1985, 57 (3), 783-826.
128
108. Shim, S.; Stuart, C. M.; Mathies, R. A., Resonance Raman cross-sections and vibronic
analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. Chemphyschem
2008, 9 (5), 697-9.
109. Jiang, N.; Zhuo, X.; Wang, J., Active Plasmonics: Principles, Structures, and Applications.
Chem Rev 2018, 118 (6), 3054-3099.
110. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q.,
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of
materials. Nat. Rev. Mater. 2016, 1 (16021), 1-26.
111. Rastogi, R.; Arianfard, H.; Moss, D.; Juodkazis, S.; Adam, P. M.; Krishnamoorthy, S.,
Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive
(Bio)molecular Detection by Plasmon Enhanced Spectroscopies. ACS Appl Mater
Interfaces 2021, 13 (7), 9113-9121.
112. Lin, E. C.; Fang, J.; Park, S. C.; Johnson, F. W.; Jacobs, H. O., Effective localized
collection and identification of airborne species through electrodynamic precipitation and
SERS-based detection. Nat Commun 2013, 4, 1636.
113. Wrzosek, B.; Kitahama, Y.; Ozaki, Y., SERS Blinking on Anisotropic Nanoparticles. The
Journal of Physical Chemistry C 2020, 124 (37), 20328-20339.
114. Subr, M.; Petr, M.; Kylian, O.; Stepanek, J.; Veis, M.; Prochazka, M., Anisotropic
Optical Response of Silver Nanorod Arrays: Surface Enhanced Raman Scattering
Polarization and Angular Dependences Confronted with Ellipsometric Parameters. Sci Rep
2017, 7 (1), 4293.
129
115. Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S., Nanoparticle Cluster Arrays
for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on
Optical Fibers. ACS Nano 2012, 6 (3 ), 2056–2070
116. Yang, G.; Nanda, J.; Wang, B.; Chen, G.; Hallinan, D. T., Jr., Self-Assembly of Large
Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. ACS Appl Mater Interfaces
2017, 9 (15), 13457-13470.
117. Bian, K.; Schunk, H.; Ye, D.; Hwang, A.; Luk, T. S.; Li, R.; Wang, Z.; Fan, H.,
Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface
plasmonic coupling. Nat Commun 2018, 9 (1), 2365.
118. Gong, J.; Newman, R. S.; Engel, M.; Zhao, M.; Bian, F.; Glotzer, S. C.; Tang, Z., Shapedependent
ordering of gold nanocrystals into large-scale superlattices. Nat Commun 2017,
8, 14038.
119. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M.,
Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater
2006, 5 (4), 265-70.
120. Cheng, W.; Campolongo, M. J.; Cha, J. J.; Tan, S. J.; Umbach, C. C.; Muller, D. A.;
Luo, D., Free-standing nanoparticle superlattice sheets controlled by DNA. Nat Mater
2009, 8 (6), 519-25.
121. Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable plasmonic lattices of silver nanocrystals.
Nat Nanotechnol 2007, 2 (7), 435-40.
122. Liao, J.; Blok, S.; van der Molen, S. J.; Diefenbach, S.; Holleitner, A. W.;
Schonenberger, C.; Vladyka, A.; Calame, M., Ordered nanoparticle arrays interconnected
130
by molecular linkers: electronic and optoelectronic properties. Chem Soc Rev 2015, 44 (4),
999-1014.
123. Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in topdown
and bottom-up surface nanofabrication: techniques, applications & future prospects.
Adv Colloid Interface Sci 2012, 170 (1-2), 2-27.
124. Ren, B.; Lin, X.-F.; Yang, Z.-L.; Liu, G.-K.; Aroca, R. F.; Mao, B.-W.; Tian, Z.-Q.,
Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region: UV-SERS on
Rhodium and Ruthenium Electrodes. J. AM. CHEM. SOC. 2003, 125 (32), 9598-9599.
125. Yang, Z. L.; Li, Q. H.; Ren, B.; Tian, Z. Q., Tunable SERS from aluminium nanohole
arrays in the ultraviolet region. Chem Commun (Camb) 2011, 47 (13), 3909-11.
126. Lin, X.-F.; Ren, B.; Yang, Z.-L.; Liu, G.-K.; Tian, Z.-Q., Surface-enhanced Raman
spectroscopy with ultraviolet excitation. Journal of Raman Spectroscopy 2005, 36 (6-7),
606-612.
127. Cui, L.; Wu, D.-Y.; Wang, A.; Ren, B.; Tian, Z.-Q., Charge-Transfer Enhancement
Involved in the SERS of Adenine on Rh and Pd Demonstrated by Ultraviolet to Visible
Laser Excitation. J. Phys. Chem. C 2010, 114, 16588–16595.
128. Kammer, E.; Dorfer, T.; Csaki, A.; Schumacher, W.; Da Costa Filho, P. A.; Tarcea, N.;
Fritzsche, W.; Rosch, P.; Schmitt, M.; Popp, J., Evaluation of Colloids and Activation
Agents for Determination of Melamine Using UV-SERS. J Phys Chem C Nanomater
Interfaces 2012, 116 (10), 6083-6091.
129. Sigle, D. O.; Perkins, E.; Baumberg, J. J.; Mahajan, S., Reproducible Deep-UV SERRS on
Aluminum Nanovoids. J Phys Chem Lett 2013, 4 (9), 1449-52.
131
130. Ding, T.; Sigle, D. O.; Herrmann, L. O.; Wolverson, D.; Baumberg, J. J., Nanoimprint
lithography of Al nanovoids for deep-UV SERS. ACS Appl Mater Interfaces 2014, 6 (20),
17358-63.
131. Raja, S. S.; Cheng, C. W.; Sang, Y.; Chen, C. A.; Zhang, X. Q.; Dubey, A.; Yen, T. J.;
Chang, Y. M.; Lee, Y. H.; Gwo, S., Epitaxial Aluminum Surface-Enhanced Raman
Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020, 14
(7), 8838-8845.
132. Su, D.; Jiang, S.; Yu, M.; Zhang, G.; Liu, H.; Li, M. Y., Facile fabrication of
configuration controllable self-assembled Al nanostructures as UV SERS substrates.
Nanoscale 2018, 10 (48), 22737-22744.
133. Cardinal, M. F.; Vander Ende, E.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz,
G. C.; Van Duyne, R. P., Expanding applications of SERS through versatile nanomaterials
engineering. Chem Soc Rev 2017, 46 (13), 3886-3903.
134. Lu, P.; Lang, J.; Weng, Z.; Rahimi-Iman, A.; Wu, H., Hybrid Structure of 2D Layered
GaTe with Au Nanoparticles for Ultrasensitive Detection of Aromatic Molecules. ACS Appl
Mater Interfaces 2018, 10 (1), 1356-1362.
135. Kim, N. Y.; Leem, Y. C.; Hong, S. H.; Park, J. H.; Yim, S. Y., Ultrasensitive and Stable
Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin
Monolayers: Effect of the Insulating Property. ACS Appl Mater Interfaces 2019, 11 (6),
6363-6373.
136. Shutov, A. D.; Yi, Z.; Wang, J.; Sinyukov, A. M.; He, Z.; Tang, C.; Chen, J.; Ocola, E.
J.; Laane, J.; Sokolov, A. V.; Voronine, D. V.; Scully, M. O., Giant Chemical Surface
132
Enhancement of Coherent Raman Scattering on MoS2. ACS Photonics 2018, 5 (12), 4960-
4968.
137. Xia, M., 2D Materials-Coated Plasmonic Structures for SERS Applications. Coatings 2018,
8 (4), 137.
138. Kim, G.; Kim, M.; Hyun, C.; Hong, S.; Ma, K. Y.; Shin, H. S.; Lim, H., Hexagonal
Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of
Surface-Enhanced Raman Spectroscopy. ACS Nano 2016, 10 (12), 11156-11162.
139. Basu, R.; Atwood, L. J., Two-dimensional hexagonal boron nitride nanosheet as the planaralignment
agent in a liquid crystal-based electro-optic device. Opt Express 2019, 27 (1),
282-292.
140. Liu, L.; Feng, Y. P.; Shen, Z. X., Structural and electronic properties of h-BN. Physical
Review B 2003, 68, 104102.
141. Uchida, Y.; Nakandakari, S.; Kawahara, K.; Yamasaki, S.; Mitsuhara, M.; Ago, H.,
Controlled Growth of Large-Area Uniform Multilayer Hexagonal Boron Nitride as an
Effective 2D Substrate. ACS Nano 2018, 12 (6), 6236-6244.
142. García de Abajo, F. J., Graphene Plasmonics: Challenges and Opportunities. ACS Photonics
2014, 1 (3), 135-152.
143. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.;
Liu, Z., Can graphene be used as a substrate for Raman enhancement? Nano Lett 2010, 10
(2), 553-61.
144. Lai, H.; Xu, F.; Zhang, Y.; Wang, L., Recent progress on graphene-based substrates for
surface-enhanced Raman scattering applications. J Mater Chem B 2018, 6 (24), 4008-4028.
133
145. Vales, V.; Drogowska-Horna, K.; Guerra, V. L. P.; Kalbac, M., Graphene-enhanced
Raman scattering on single layer and bilayers of pristine and hydrogenated graphene. Sci
Rep 2020, 10 (1), 4516.
146. Zhang, N.; Tong, L.; Zhang, J., Graphene-Based Enhanced Raman Scattering toward
Analytical Applications. Chemistry of Materials 2016, 28 (18), 6426-6435.
147. Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R., Graphene
oxide: An efficient material and recent approach for biotechnological and biomedical
applications. Mater Sci Eng C Mater Biol Appl 2018, 86, 173-197.
148. Li, M.; Gao, Y.; Fan, X.; Wei, Y.; Hao, Q.; Qiu, T., Origin of layer-dependent SERS
tunability in 2D transition metal dichalcogenides. Nanoscale Horiz 2021, 6 (2), 186-191.
149. Lee, Y.; Kim, H.; Lee, J.; Yu, S. H.; Hwang, E.; Lee, C.; Ahn, J.-H.; Cho, J. H.,
Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition
Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chemistry of
Materials 2015, 28 (1), 180-187.
150. Fraser, J. P.; Postnikov, P.; Miliutina, E.; Kolska, Z.; Valiev, R.; Svorcik, V.; Lyutakov,
O.; Ganin, A. Y.; Guselnikova, O., Application of a 2D Molybdenum Telluride in SERS
Detection of Biorelevant Molecules. ACS Appl Mater Interfaces 2020, 12 (42), 47774-
47783.
151. Wu, H.; Zhou, X.; Li, J.; Li, X.; Li, B.; Fei, W.; Zhou, J.; Yin, J.; Guo, W., Ultrathin
Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman
Spectroscopy Substrates with High Sensitivity. Small 2018, 14 (37), e1802276.
152. Qiao, Y.; Wang, D.; Buriak, J. M., Block Copolymer Templated Etching on Silicon. Nano
Lett 2007, 7 (2), 464-469.
134
153. Fujita, T.; Okada, H.; Koyama, K.; Watanabe, K.; Maekawa, S.; Chen, M. W., Unusually
small electrical resistance of three-dimensional nanoporous gold in external magnetic fields.
Phys Rev Lett 2008, 101 (16), 166601.
154. Yu, H. D.; Yang, D.; Wang, D.; Han, M. Y., Top-down fabrication of calcite nanoshoot
arrays by crystal dissolution. Adv Mater 2010, 22 (29), 3181-4.
155. Yu, H.; Wang, D.; Han, M.-Y., Top-Down Solid-Phase Fabrication of Nanoporous
Cadmium Oxide Architectures. J. Am. Chem. Soc. 2007, 129, 2333-2337.
156. Gisbert Quilis, N.; Lequeux, M.; Venugopalan, P.; Khan, I.; Knoll, W.; Boujday, S.;
Lamy de la Chapelle, M.; Dostalek, J., Tunable laser interference lithography preparation of
plasmonic nanoparticle arrays tailored for SERS. Nanoscale 2018, 10 (21), 10268-10276.
157. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New
Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev.
2005, 105, 1171-1196.
158. Suresh, V.; Ding, L.; Chew, A. B.; Yap, F. L., Fabrication of Large-Area Flexible SERS
Substrates by Nanoimprint Lithography. ACS Applied Nano Materials 2018, 1 (2), 886-893.
159. Hwang, J. S.; Yang, M., Sensitive and Reproducible Gold SERS Sensor Based on
Interference Lithography and Electrophoretic Deposition. Sensors (Basel) 2018, 18, 4076.
160. Hong, K. Y.; Brolo, A. G., Polarization-dependent surface-enhanced Raman scattering
(SERS) from microarrays. Anal Chim Acta 2017, 972, 73-80.
161. Cinel, N. A.; Cakmakyapan, S.; Butun, S.; Ertas, G.; Ozbay, E., E-Beam lithography
designed substrates for surface enhanced Raman spectroscopy. Photonics and
Nanostructures - Fundamentals and Applications 2015, 15, 109-115.
135
162. Yue, W.; Wang, Z.; Yang, Y.; Chen, L.; Syed, A.; Wong, K.; Wang, X., Electron-beam
lithography of gold nanostructures for surface-enhanced Raman scattering. Journal of
Micromechanics and Microengineering 2012, 22, 125007.
163. Hatab, N. A. A.; Oran, J. M.; Sepaniak, M. J., Surface-Enhanced Raman Spectroscopy
Substrates Created via Electron Beam Lithography and Nanotransfer Printing. ACS Nano
2008, 2 (2), 377–385.
164. Petti, L.; Capasso, R.; Rippa, M.; Pannico, M.; La Manna, P.; Peluso, G.; Calarco, A.;
Bobeico, E.; Musto, P., A plasmonic nanostructure fabricated by electron beam lithography
as a sensitive and highly homogeneous SERS substrate for bio-sensing applications.
Vibrational Spectroscopy 2016, 82, 22-30.
165. Tuomo Suntola, R.; Jorma Antson, U., Method for producing compound thin films. United
States Patent 1977, 635,233.
166. George, S. M., Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131.
167. Knez, M.; Nielsch, K.; Niinistö, L., Synthesis and Surface Engineering of Complex
Nanostructures by Atomic Layer Deposition. Adv. Mater. 2007 19, 3425–3438.
168. B, J. P. C., Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-
Dependent Nanoparticle Optics. 2001 105, 5599-5611
169. Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Duyne, R. P.
V., Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays.
J. Phys. Chem. B 1999, 103, 3854-3863.
170. Zhang, X.; Duyne, R. P. V., Optimized Silver Film over Nanosphere Surfaces for the
Biowarfare Agent Detection Based on Surface-Enhanced Raman Spectroscopy. Mater. Res.
Soc. Symp. Proc. 2005, 876, R8.54.1-R8.54.6.
136
171. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Duyne, R. P. V., Toward a
Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. AM. CHEM. SOC.
2003, 125, 588-593.
172. Stuart, D. A.; Yonzon, C. R.; Zhang, X.; Lyandres, O.; Nilam C. Shah; Glucksberg, M.
R.; Walsh, J. T.; Duyne, R. P. V., Glucose Sensing Using Near-Infrared Surface-Enhanced
Raman Spectroscopy: Gold Surfaces, 10-Day Stability, and Improved Accuracy. Anal.
Chem. 2005, 77, 4013-4019.
173. Dervishi, E.; Li, Z.; Watanabe, F.; Xu, Y.; Saini, V.; Biris, A. R.; Biris, A. S., Thermally
controlled synthesis of single-wall carbon nanotubes with selective diameters. Journal of
Materials Chemistry 2009, 19 (19), 3004–3012.
174. Dervishi, E.; Li, Z.; Biris, A. R.; Lupu, D.; Trigwell, S.; Biris, A. S., Morphology of
Multi-Walled Carbon Nanotubes Affected by the Thermal Stability of the Catalyst System.
Chem. Mater. 2007, 19, 179-184.
175. Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H.; Zhang, H.; Yang, B., Controllable
Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the
Reactivity of Gold Chloride. J. Phys. Chem. C 2011, 115 (9), 3630-3637.
176. Khoury, C. G.; Vo-Dinh, T., Gold Nanostars For Surface-Enhanced Raman Scattering:
Synthesis, Characterization and Optimization. J. Phys. Chem. C 2008, 112, 18849–18859.
177. Osinkina, L.; Lohmüller, T.; Jäckel, F.; Feldmann, J., Synthesis of Gold Nanostar Arrays
as Reliable, Large-Scale, Homogeneous Substrates for Surface-Enhanced Raman Scattering
Imaging and Spectroscopy. The Journal of Physical Chemistry C 2013, 117 (43), 22198-
22202.
137
178. Beyene, A. B.; Hwang, B. J.; Tegegne, W. A.; Wang, J.-S.; Tsai, H.-C.; Su, W.-N.,
Reliable and sensitive detection of pancreatic cancer marker by gold nanoflower-based
SERS mapping immunoassay. Microchemical Journal 2020, 158, 105099.
179. Chen, Z.; Balankura, T.; Fichthorn, K. A.; Rioux, R. M., Revisiting the Polyol Synthesis
of Silver Nanostructures: Role of Chloride in Nanocube Formation. ACS Nano 2019, 13 (2),
1849-1860.
180. Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y., Large-scale synthesis of silver nanocubes: the
role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed Engl
2005, 44 (14), 2154-7.
181. Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y., Rapid synthesis of small silver
nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium
hydrosulfide. Chem Phys Lett 2006, 432 (4-6), 491-496.
182. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Facile synthesis of Ag nanocubes of 30
to 70 nm in edge length with CF(3)COOAg as a precursor. Chem. Eur. J. 2010, 16 (33),
10234-9.
183. Sau, T. K.; Murphy, C. J., Seeded High Yield Synthesis of Short Au Nanorods in Aqueous
Solution. Langmuir 2004, 20, 6414-6420.
184. Paulo, P. M. R.; Zijlstra, P.; Orrit, M.; Garcia-Fernandez, E.; Pace, T. C. S.; Viana, A.
S.; Costa, S. M. B., Tip-Specific Functionalization of Gold Nanorods for Plasmonic
Biosensing: Effect of Linker Chain Length. Langmuir 2017, 33 (26), 6503-6510.
185. von Maltzahn, G.; Centrone, A.; Park, J. H.; Ramanathan, R.; Sailor, M. J.; Hatton, T.
A.; Bhatia, S. N., SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely
138
Multiplexed Near-Infrared Imaging and Photothermal Heating. Adv Mater 2009, 21 (31),
3175-3180.
186. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and
nanowires of controllable aspect ratio. Chemical Communications 2001, (7), 617-618.
187. Hu, J. Q.; Chen, Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y.; Yang, Z.
L.; Tian, Z. Q., A Simple and Effective Route for the Synthesis of Crystalline Silver
Nanorods and Nanowires. Advanced Functional Materials 2004, 14 (2), 183-189.
188. Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q.-H.; Wang, J., Production of Monodisperse
Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of
Their Plasmonic Properties. Advanced Optical Materials 2015, 3 (6), 801-812.
189. Sanchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-
Marzan, L. M., High-Yield Seeded Growth of Monodisperse Pentatwinned Gold
Nanoparticles through Thermally Induced Seed Twinning. J Am Chem Soc 2017, 139 (1),
107-110.
190. Shi, Q.; Si, K. J.; Sikdar, D.; Yap, L. W.; Premaratne, M.; Cheng, W., Two-Dimensional
Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct
Orientational Packing Orders. ACS Nano 2016, 10 (1), 967-76.
191. Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y., Bipyramid-templated synthesis of
monodisperse anisotropic gold nanocrystals. Nat Commun 2015, 6, 7571.
192. Kuttner, C.; Mayer, M.; Dulle, M.; Moscoso, A.; Lopez-Romero, J. M.; Forster, S.;
Fery, A.; Perez-Juste, J.; Contreras-Caceres, R., Seeded Growth Synthesis of Gold
Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. ACS Appl Mater
Interfaces 2018, 10 (13), 11152-11163.
139
193. Wang, C.; Liu, B.; Dou, X., Silver nanotriangles-loaded filter paper for ultrasensitive
SERS detection application benefited by interspacing of sharp edges. Sensors and Actuators
B: Chemical 2016, 231, 357-364.
194. Liebig, F.; Sarhan, R. M.; Sander, M.; Koopman, W.; Schuetz, R.; Bargheer, M.; Koetz,
J., Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-
Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic
Reactions. ACS Appl Mater Interfaces 2017, 9 (23), 20247-20253.
195. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal
Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B
2003, 107, 668-677.
196. Hu, F.; Zhang, Y.; Chen, G.; Li, C.; Wang, Q., Double-walled Au nanocage/SiO2
nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Small
2015, 11 (8), 985-93.
197. Cao, X.; Wang, Z.; Bi, L.; Bi, C.; Du, Q., Gold nanocage-based surface-enhanced Raman
scattering probes for long-term monitoring of intracellular microRNA during bone marrow
stem cell differentiation. Nanoscale 2020, 12 (3), 1513-1527.
198. Xia, Y.; Xia, X.; Peng, H. C., Shape-Controlled Synthesis of Colloidal Metal Nanocrystals:
Thermodynamic versus Kinetic Products. J Am Chem Soc 2015, 137 (25), 7947-66.
199. Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M., Shape control in gold
nanoparticle synthesis. Chemical Society Reviews 2008, 37 (9), 1783–1791.
200. El-Brolossy, T. A.; Abdallah, T.; Mohamed, M. B.; Abdallah, S.; Easawi, K.; Negm, S.;
Talaat, H., Shape and size dependence of the surface plasmon resonance of gold
140
nanoparticles studied by Photoacoustic technique. The European Physical Journal Special
Topics 2008, 153 (1), 361-364.
201. Kuruvinashetti, K.; Zhang, Y.; Li, J.; Kornienko, N., Shell isolated nanoparticle enhanced
Raman spectroscopy for renewable energy electrocatalysis. New Journal of Chemistry
2020, 44 (46), 19953-19960.
202. Han, Y.; Lu, Z.; Teng, Z.; Liang, J.; Guo, Z.; Wang, D.; Han, M. Y.; Yang, W.,
Unraveling the Growth Mechanism of Silica Particles in the Stober Method: In Situ Seeded
Growth Model. Langmuir 2017, 33 (23), 5879-5890.
203. Liz-Marza´n, L. M.; Giersig, M.; Mulvaney, P., Synthesis of Nanosized Gold-Silica Core-
Shell Particles. Langmuir 1996, 12, 4329-4335.
204. Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marza´n, L. M., Sol-Gel Processing of Silica-
Coated Gold Nanoparticles. Langmuir 2001, 17, 6375-6379.
205. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L. M., Silica
coating of silver nanoparticles using a modified Stober method. J Colloid Interface Sci
2005, 283 (2), 392-6.
206. Xia, B.; Yan, L.; Li, Y.; Zhang, S.; He, M.; Li, H.; Yan, H.; Jiang, B., Preparation of
silica coatings with continuously adjustable refractive indices and wettability properties via
sol–gel method. RSC Advances 2018, 8 (11), 6091-6098.
207. Fernandez-Lopez, C.; Mateo-Mateo, C.; Alvarez-Puebla, R. A.; Perez-Juste, J.;
Pastoriza-Santos, I.; Liz-Marzan, L. M., Highly controlled silica coating of PEG-capped
metal nanoparticles and preparation of SERS-encoded particles. Langmuir 2009, 25 (24),
13894-9.
141
208. Montaño-Priede, J. L.; Coelho, J. P.; Guerrero-Martínez, A.; Peña-Rodríguez, O.; Pal, U.,
Fabrication of Monodispersed Au@SiO2Nanoparticles with Highly Stable Silica Layers by
Ultrasound-Assisted Stöber Method. The Journal of Physical Chemistry C 2017, 121 (17),
9543-9551.
209. Shah, K. W.; Sreethawong, T.; Liu, S. H.; Zhang, S. Y.; Tan, L. S.; Han, M. Y., Aqueous
route to facile, efficient and functional silica coating of metal nanoparticles at room
temperature. Nanoscale 2014, 6 (19), 11273-81.
210. Graf, C.; Vossen, D. L. J.; Imhof, A.; Blaaderen, A. v., A General Method To Coat
Colloidal Particles with Silica. Langmuir 2003, 19, 6693-6700.
211. Levin, C. S.; Hofmann, C.; Ali, T. A.; Kelly, A. T.; Morosan, E.; Nordlander, P.;
Whitmire, K. H.; Halas, N. J., Magnetic-Plasmonic Core-Shell Nanoparticles. ACS Nano
2009, 3 (6), 1379–1388.
212. Huang, X.; Schmucker, A.; Dyke, J.; Hall, S. M.; Retrum, J.; Stein, B.; Remmes, N.;
Baxter, D. V.; Dragnea, B.; Bronstein, L. M., Magnetic nanoparticles with functional
silanes: evolution of well-defined shells from anhydride containing silane. J Mater Chem
2009, 19 (24), 4231-4239.
213. Wang, Z.; Li, Q.; Zhao, Z.; Tong, X., Synthesis of octapod Cu–Au bimetallic nanocrystal
with concave structure through galvanic replacement reaction. Journal of Electronic
Science and Technology 2020, 18, 100046.
214. Pincella, F.; Song, Y.; Ochiai, T.; Isozaki, K.; Sakamoto, K.; Miki, K., Squarecentimeter-
scale 2D-arrays of Au@Ag core–shell nanoparticles towards practical SERS
substrates with enhancement factor of 10 7. Chemical Physics Letters 2014, 605-606, 115-
120.
142
215. Park, M.; Hwang, C. S. H.; Jeong, K. H., Nanoplasmonic Alloy of Au/Ag Nanocomposites
on Paper Substrate for Biosensing Applications. ACS Appl Mater Interfaces 2018, 10 (1),
290-295.
216. Liu, Z.; Yang, Z.; Peng, B.; Cao, C.; Zhang, C.; You, H.; Xiong, Q.; Li, Z.; Fang, J.,
Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from
hollow Au-Ag alloy nanourchins. Adv Mater 2014, 26 (15), 2431-9.
217. Li, M.; Cushing, S. K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma,
D.; Liu, Y.; Wu, N., Three-Dimensional Hierarchical Plasmonic Nano-Architecture
Enhanced Surface-Enhanced Raman Scattering Immunosensor for Cancer Biomarker
Detection in Blood Plasma. 2013, 7 (6), 4967–4976.
218. Li, X.; Choy, W. C. H.; Ren, X.; Zhang, D.; Lu, H., Highly Intensified Surface Enhanced
Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film-Metal
Nanoparticle Coupling System. Advanced Functional Materials 2014, 24 (21), 3114-3122.
219. Liao, J.; Li, X.; Wang, Y.; Zhang, C.; Sun, J.; Duan, C.; Chen, Q.; Peng, L., Patterned
close-packed nanoparticle arrays with controllable dimensions and precise locations. Small
2012, 8 (7), 991-6.
220. Ming, T.; Kou, X.; Chen, H.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang,
J., Ordered gold nanostructure assemblies formed by droplet evaporation. Angew Chem Int
Ed Engl 2008, 47 (50), 9685-90.
221. Santhanam, V.; Liu, J.; Agarwal, R.; Andres, R. P., Self-Assembly of Uniform Monolayer
Arrays of Nanoparticles. Langmuir 2003, 19, 7881-7887.
222. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Grabar, K. C.; Allison, K. J.; Bright, B.
M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter,
143
D. G.; Natan, M. J., Self-assembled metal colloid monolayers An approach to SERS
substrates. Science 1995, 267 (5204), 1629-1632.
223. Li, Y. J.; Huang, W. J.; Sun, S. G., A universal approach for the self-assembly of
hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew
Chem Int Ed Engl 2006, 45 (16), 2537-9.
224. Yogev, D.; Efrima, S., Novel silver metal liquidlike films. The Journal of Physical
Chemistry 2002, 92 (20), 5754-5760.
225. Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D., Spontaneous Assembly of
a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface. Angewandte Chemie
2004, 116 (4), 464-468.
226. Duan, H.; Wang, D.; Kurth, D. G.; Mohwald, H., Directing self-assembly of nanoparticles
at water/oil interfaces. Angew Chem Int Ed Engl 2004, 43 (42), 5639-42.
227. Nam, N. N.; Bui, T. L.; Son, S. J.; Joo, S. W., Ultrasonication‐Induced Self‐Assembled
Fixed Nanogap Arrays of Monomeric Plasmonic Nanoparticles inside Nanopores.
Advanced Functional Materials 2019, 29 (12).
228. Nuntawong, N.; Horprathum, M.; Eiamchai, P.; Wong-ek, K.; Patthanasettakul, V.;
Chindaudom, P., Surface-enhanced Raman scattering substrate of silver nanoparticles
depositing on AAO template fabricated by magnetron sputtering. Vacuum 2010, 84 (12),
1415-1418.
229. Hao, Q.; Huang, H.; Fan, X.; Hou, X.; Yin, Y.; Li, W.; Si, L.; Nan, H.; Wang, H.;
Mei, Y.; Qiu, T.; Chu, P. K., Facile design of ultra-thin anodic aluminum oxide membranes
for the fabrication of plasmonic nanoarrays. Nanotechnology 2017, 28 (10), 105301.
144
230. Kang, M.; Zhang, X.; Liu, L.; Zhou, Q.; Jin, M.; Zhou, G.; Gao, X.; Lu, X.; Zhang, Z.;
Liu, J., High-density ordered Ag@Al(2)O(3) nanobowl arrays in applications of surfaceenhanced
Raman spectroscopy. Nanotechnology 2016, 27 (16), 165304.
231. Dana, Y.; Zhonga, C.; Zhua, H.; Wang, J., Highly ordered Au-decorated Ag nanorod
arrays as an ultrasensitive and reusable substrate for surface enhanced Raman scattering.
Colloids and Surfaces A 2019, 560, 360–365.
232. Masuda, H.; Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication
of Honeycomb Structures of Anodic Alumina. SCIENCE 1995, 268, 1466-1468.
233. Ting, C. H.; Paunovi, M., Selective Electroless Metal Deposition for Integrated Circuit
Fabrication. J. Electrochem. Soc. 1989, 136, 456-462.
234. Liu, L.; Wu, F.; Xu, D.; Li, N.; Lu, N., Space confined electroless deposition of silver
nanoparticles for highly-uniform SERS detection. Sensors and Actuators B: Chemical
2018, 255, 1401-1406.
235. Shipley, C. R., Historical Highlights of Electroless Plating. NASF Surface Technology
White Papers 2018, 82, 13-24.
236. Giersig, M.; Mulvaney, P., Formation of ordered two-dimensional gold colloid lattices by
electrophoretic deposition. J. Phys. Chem. B 2002, 97 (24), 6334-6336.
237. Basics of cancer. https://www.pancan.org/news/cancer-101-back-to-school-to-understandthe-
basics-of-cancer/ (accessed 21 May 2019).
238. Cancer. https://en.wikipedia.org/wiki/Cancer (accessed 29June 2021).
239. What causes cancer? https://www.who.int/en/news-room/fact-sheets/detail/cancer (accessed
21 May 2019).
145
240. Perkins, G. L.; Slater, E.; Sanders, G. K.; Prichard, J. G., Serum Tumor Markers. Am Fam
Physician 2003, 6 (68), 1075 - 1082
241. Duffy, M. J., Tumor markers in clinical practice: a review focusing on common solid
cancers. Med Princ Pract 2013, 22 (1), 4-11.
242. Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y., SERS-Activated Platforms for
Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017, 117 (12),
7910-7963.
243. Lane, L. A.; Qian, X.; Nie, S., SERS Nanoparticles in Medicine: From Label-Free
Detection to Spectroscopic Tagging. Chem Rev 2015, 115 (19), 10489-529.
244. Laing, S.; Gracie, K.; Faulds, K., Multiplex in vitro detection using SERS. Chem Soc Rev
2016, 45 (7), 1901-1918.
245. Liu, X.; Liu, X.; Rong, P.; Liu, D., Recent advances in background-free Raman scattering
for bioanalysis. TrAC Trends in Analytical Chemistry 2020, 123, 115765.
246. Haldavnekar, R.; Venkatakrishnan, K.; Tan, B., Non plasmonic semiconductor quantum
SERS probe as a pathway for in vitro cancer detection. Nat Commun 2018, 9 (1), 3065.
247. Li, M.; Kang, J. W.; Sukumar, S.; Dasari, R. R.; Barman, I., Multiplexed detection of
serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem Sci
2015, 6 (7), 3906-3914.
248. Lee, M.; Lee, S.; Lee, J. H.; Lim, H. W.; Seong, G. H.; Lee, E. K.; Chang, S. I.; Oh, C.
H.; Choo, J., Highly reproducible immunoassay of cancer markers on a gold-patterned
microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron
2011, 26 (5), 2135-41.
146
249. Li, J.; Wang, J.; Grewal, Y. S.; Howard, C. B.; Raftery, L. J.; Mahler, S.; Wang, Y.;
Trau, M., Multiplexed SERS Detection of Soluble Cancer Protein Biomarkers with Gold-
Silver Alloy Nanoboxes and Nanoyeast Single-Chain Variable Fragments. Anal Chem
2018, 90 (17), 10377-10384.
250. Wang, Y.; Yan, B.; Chen, L., SERS tags: novel optical nanoprobes for bioanalysis. Chem
Rev 2013, 113 (3), 1391-428.
251. Zhang, Y.; Gu, Y.; He, J.; Thackray, B. D.; Ye, J., Ultrabright gap-enhanced Raman tags
for high-speed bioimaging. Nat Commun 2019, 10 (1), 3905.
252. Shao, H.; Lin, H.; Guo, Z.; Lu, J.; Jia, Y.; Ye, M.; Su, F.; Niu, L.; Kang, W.; Wang,
S.; Hu, Y.; Huang, Y., A multiple signal amplification sandwich-type SERS biosensor for
femtomolar detection of miRNA. Biosens Bioelectron 2019, 143, 111616.
253. Li, J.; Skeete, Z.; Shan, S.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q. M.;
Holubovska, P.; Luo, J.; Hepel, M.; Zhong, C. J., Surface Enhanced Raman Scattering
Detection of Cancer Biomarkers with Bifunctional Nanocomposite Probes. Anal Chem
2015, 87 (21), 10698-702.
254. Lenzi, E.; Jimenez de Aberasturi, D.; Liz-Marzan, L. M., Surface-Enhanced Raman
Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens
2019, 4 (5), 1126-1137.
255. Xu, L. J.; Lei, Z. C.; Li, J.; Zong, C.; Yang, C. J.; Ren, B., Label-free surface-enhanced
Raman spectroscopy detection of DNA with single-base sensitivity. J Am Chem Soc 2015,
137 (15), 5149-54.
147
256. Pang, Y.; Wang, C.; Lu, L.; Wang, C.; Sun, Z.; Xiao, R., Dual-SERS biosensor for onestep
detection of microRNAs in exosome and residual plasma of blood samples for
diagnosing pancreatic cancer. Biosens Bioelectron 2019, 130, 204-213.
257. Xu, L. J.; Zong, C.; Zheng, X. S.; Hu, P.; Feng, J. M.; Ren, B., Label-free detection of
native proteins by surface-enhanced Raman spectroscopy using iodide-modified
nanoparticles. Anal Chem 2014, 86 (4), 2238-45.
258. Zhang, Z.; Yu, W.; Wang, J.; Luo, D.; Qiao, X.; Qin, X.; Wang, T., Ultrasensitive
Surface-Enhanced Raman Scattering Sensor of Gaseous Aldehydes as Biomarkers of Lung
Cancer on Dendritic Ag Nanocrystals. Anal Chem 2017, 89 (3), 1416-1420.
259. Xiao, L.; Bailey, K. A.; Wang, H.; Schultz, Z. D., Probing Membrane Receptor-Ligand
Specificity with Surface- and Tip- Enhanced Raman Scattering. Anal Chem 2017, 89 (17),
9091-9099.
260. He, S.; Kyaw, Y. M. E.; Tan, E. K. M.; Bekale, L.; Kang, M. W. C.; Kim, S. S.; Tan, I.;
Lam, K. P.; Kah, J. C. Y., Quantitative and Label-Free Detection of Protein Kinase A
Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars. Anal
Chem 2018, 90 (10), 6071-6080.
261. Wang, K.; Li, S.; Petersen, M.; Wang, S.; Lu, X., Detection and Characterization of
Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy.
Nanomaterials (Basel) 2018, 8 (10), 762.
262. Huang, H. K.; Cheng, H. W.; Liao, C. C.; Lin, S. J.; Chen, Y. Z.; Wang, J. K.; Wang, Y.
L.; Huang, N. T., Bacteria encapsulation and rapid antibiotic susceptibility test using a
microfluidic microwell device integrating surface-enhanced Raman scattering. Lab Chip
2020, 20 (14), 2520-2528.
148
263. Lu, X.; Samuelson, D. R.; Xu, Y.; Zhang, H.; Wang, S.; Rasco, B. A.; Xu, J.; Konkel,
M. E., Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using
a microfluidic SERS biosensor. Anal Chem 2013, 85 (4), 2320-7.
264. Peng, H.; Chen, I. A., Rapid Colorimetric Detection of Bacterial Species through the
Capture of Gold Nanoparticles by Chimeric Phages. ACS Nano 2019, 13 (2), 1244-1252.
265. Cheng, Z. H.; Liu, X.; Zhang, S. Q.; Yang, T.; Chen, M. L.; Wang, J. H., Placeholder
Strategy with Upconversion Nanoparticles-Eriochrome Black T Conjugate for a
Colorimetric Assay of an Anthrax Biomarker. Anal Chem 2019, 91 (18), 12094-12099.
266. Coggins, L. X.; Larma, I.; Hinchliffe, A.; Props, R.; Ghadouani, A., Flow cytometry for
rapid characterisation of microbial community dynamics in waste stabilisation ponds. Water
Res 2020, 169, 115243.
267. Sun, L. P.; Huang, Y.; Huang, T.; Yuan, Z.; Lin, W.; Sun, Z.; Yang, M.; Xiao, P.; Ma,
J.; Wang, W.; Zhang, Y.; Liu, Z.; Guan, B. O., Optical Microfiber Reader for Enzyme-
Linked Immunosorbent Assay. Anal Chem 2019, 91 (21), 14141-14148.
268. Traore, S. I.; Khelaifia, S.; Armstrong, N.; Lagier, J. C.; Raoult, D., Isolation and culture
of Methanobrevibacter smithii by co-culture with hydrogen-producing bacteria on agar
plates. Clin Microbiol Infect 2019, 25 (12), 1561 e1-1561 e5.
269. Cozar, I. B.; Colniţă, A.; Szöke-Nagy, T.; Gherman, A. M. R.; Dina, N. E., Label-Free
Detection of Bacteria Using Surface-Enhanced Raman Scattering and Principal Component
Analysis. Analytical Letters 2018, 52 (1), 177-189.
270. Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Schubert, S.; Niessner, R.; Wieser,
A.; Haisch, C., Label-Free in Situ Discrimination of Live and Dead Bacteria by Surface-
Enhanced Raman Scattering. Anal Chem 2015, 87 (13), 6553-61.
149
271. Gao, W.; Li, B.; Yao, R.; Li, Z.; Wang, X.; Dong, X.; Qu, H.; Li, Q.; Li, N.; Chi, H.;
Zhou, B.; Xia, Z., Intuitive Label-Free SERS Detection of Bacteria Using Aptamer-Based
in Situ Silver Nanoparticles Synthesis. Anal Chem 2017, 89 (18), 9836-9842.
272. Mosier-Boss, P. A., Review on SERS of Bacteria. Biosensors (Basel) 2017, 7 (4), 51.
273. Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C., SERS
detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 2014, 86
(3), 1525-33.
274. Prakash, O.; Sil, S.; Verma, T.; Umapathy, S., Direct Detection of Bacteria Using
Positively Charged Ag/Au Bimetallic Nanoparticles: A Label-free Surface-Enhanced
Raman Scattering Study Coupled with Multivariate Analysis. The Journal of Physical
Chemistry C 2019, 124 (1), 861-869.
275. Gong, H.; Zhang, K.; Dicko, C.; Bülow, L.; Ye, L., Ag–Polymer Nanocomposites for
Capture, Detection, and Destruction of Bacteria. ACS Applied Nano Materials 2019, 2 (3),
1655-1663.
276. Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse
Gold Suspensions. Nat. Phys. Sci. 1973, 241 (1), 20-22.
277. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., Size Control of Gold Nanocrystals in
Citrate Reduction The Third Role of Citrate. J. AM. CHEM. SOC. 2007, 129, 13939-13948.
278. Turkevich, J.; Steveson, P. C.; Hillier, J., A study of the nucleation and growth processes in
the synthesis of colloidal gold. Disc. Farad. Soc. 1951, 11, 55.
279. Turkevich, J.; Steveson, P. C.; Hillier, J., The Formation of Colloidal Gold. J. Phys. Chem
1953, 57, 670-673.
150
280. Kha, N. M.; Chen, C. H.; Su, W. N.; Rick, J.; Hwang, B. J., Improved Raman and
photoluminescence sensitivity achieved using bifunctional Ag@SiO(2) nanocubes. Phys
Chem Chem Phys 2015, 17 (33), 21226-35.
281. Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y., Facile synthesis of Ag nanocubes and Au
nanocages. Nat Protoc 2007, 2 (9), 2182-90.
282. Gole, A.; Orendorff, C. J.; Murphy, C. J., Immobilization of Gold Nanorods onto Acid-
Terminated Self-Assembled Monolayers via Electrostatic Interactions. Langmuir 2004, 20,
7117-7122.
283. Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J.-F.; Boujday, S., Silane layers on
silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption.
Langmuir 2012, 28 (1), 656-665.
284. Ma, Y.; Wen, Y.; Li, J.; Li, Y.; Zhang, Z.; Feng, C.; Sun, R., Fabrication of Self-Ordered
Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid. Sci Rep
2016, 6, 39165.
285. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of
honeycomb structures of anodic alumina. Science 1995, 268 (5216), 1466-8.
286. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast fabrication of long-range ordered porous
alumina membranes by hard anodization. Nat Mater 2006, 5 (9), 741-7.
287. Theohari, S.; Kontogeorgou, C., Effect of temperature on the anodizing process of
aluminum alloy AA 5052. Applied Surface Science 2013, 284, 611-618.
288. Lee, W.; Park, S. J., Porous anodic aluminum oxide: anodization and templated synthesis of
functional nanostructures. Chem Rev 2014, 114 (15), 7487-556.
151
289. Wang, G.; Lipert, R. J.; Jain, M.; Kaur, S.; Chakraboty, S.; Torres, M. P.; Batra, S. K.;
Brand, R. E.; Porter, M. D., Detection of the Potential Pancreatic Cancer Marker MUC4 in
Serum Using Surface-Enhanced Raman Scattering. Anal. Chem. 2011, 83, 2554-2561.
290. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D., Immunoassay Readout Method Using
Extrinsic Raman Labels Adsorbed on Immunogold Colloids. Anal. Chem. 1999, 71, 4903-
4908.
291. Wang, G.; Park, H.-Y.; Lipert, R. J.; Porter, M. D., Mixed Monolayers on Gold
Nanoparticle Labels for Multiplexed Surface-Enhanced Raman Scattering Based
Immunoassays. Anal. Chem. 2009, 81 (23), 9643.
292. Grubisha, D. S.; Lipert, R. J.; Park, H.-Y.; Driskell, J.; Porter, M. D., Femtomolar
Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced
Raman Scattering and Immunogold Labels. Anal. Chem. 2003, 75, 5936-5943.
293. Krasnoslobodtsev, A. V.; Torres, M. P.; Kaur, S.; Vlassiouk, I. V.; Lipert, R. J.; Jain,
M.; Batra, S. K.; Lyubchenko, Y. L., Nano-immunoassay with improved performance for
detection of cancer biomarkers Nanomedicine: Nanotechnology, Biology, and Medicine
2015, 11, 167-173.
294. Porter, M. D.; Granger, M. C.; Siperko, L. M.; Lipert, R. J., Nanomaterial strategies for
immunodetection. Proc. of SPIE 2004, 8031, 464-477.
295. Li, L.; Liu, C.; Cao, X.; Tan, L.; Lu, W., Multiplexing determination of cancer-associated
biomarkers by surface-enhanced Raman scattering using ordered gold nanohoney comb
arrays. Bioanalysis 2017, 9 (20), 1561-1572.
152
296. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin 2018, 68 (6), 394-424.
297. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2018. CA Cancer J Clin 2018, 68
(1), 7-30.
298. Vincent, A.; Herman, J.; Schulick, R.; Hruban, R. H.; Goggins, M., Pancreatic cancer.
The Lancet 2011, 378 (9791), 607-620.
299. Bafna, S.; Kaur, S.; Momi, N.; Batra, S. K., Pancreatic cancer cells resistance to
gemcitabine: the role of MUC4 mucin. Br J Cancer 2009, 101 (7), 1155-61.
300. Petersen, G. M.; de Andrade, M.; Goggins, M.; Hruban, R. H.; Bondy, M.; Korczak, J.
F.; Gallinger, S.; Lynch, H. T.; Syngal, S.; Rabe, K. G.; Seminara, D.; Klein, A. P.,
Pancreatic cancer genetic epidemiology consortium. Cancer Epidemiol Biomarkers Prev
2006, 15 (4), 704-10.
301. Andrianifahanana, M.; Moniaux, N.; Schmied, B. M.; Ringel, J.; Friess, H.;
Hollingsworth, M. A.; Bϋchler, M. W.; Aubert, J.-P., Mucin (MUC) Gene Expression in
Human Pancreatic Adenocarcinoma and Chronic Pancreatitis: A Potential Role of MUC4 as
a Tumor Marker of Diagnostic Significance. Clinical Cancer Research 2001, 7, 4033-4040.
302. Chaturvedi, P.; Singh, A. P.; Moniaux, N.; Senapati, S.; Chakraborty, S.; Meza, J. L.;
Batra, S. K., MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and
invasive properties and interferes with its interaction to extracellular matrix proteins. Mol
Cancer Res 2007, 5 (4), 309-20.
303. Bell, S. E.; Sirimuthu, N. M., Quantitative surface-enhanced Raman spectroscopy. Chem
Soc Rev 2008, 37 (5), 1012-24.
153
304. Miao, X.; Wen, S.; Su, Y.; Fu, J.; Luo, X.; Wu, P.; Cai, C.; Jelinek, R.; Jiang, L.-P.;
Zhu, J.-J., Graphene Quantum Dots Wrapped Gold Nanoparticles with Integrated
Enhancement Mechanisms as Sensitive and Homogeneous Substrates for Surface-Enhanced
Raman Spectroscopy. Analytical Chemistry 2019, 91 (11), 7295-7303.
305. Perrault, S. D.; Chan, W. C., Synthesis and surface modification of highly monodispersed,
spherical gold nanoparticles of 50-200 nm. J Am Chem Soc 2009, 131 (47), 17042-3.
306. Banaei, N.; Foley, A.; Houghton, J. M.; Sun, Y.; Kim, B., Multiplex detection of
pancreatic cancer biomarkers using a SERS-based immunoassay. Nanotechnology 2017, 28
(45), 455101.
307. Hosu, O.; Tertiș, M.; Melinte, G.; Feier, B.; Săndulescu, R.; Cristea, C., Mucin 4
detection with a label-free electrochemical immunosensor. Electrochemistry
Communications 2017, 80, 39-43.
308. Wang, J.; Wu, X.; Wang, C.; Shao, N.; Dong, P.; Xiao, R.; Wang, S., Magnetically
Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus
aureus Based on Aptamer Recognition. ACS Appl Mater Interfaces 2015, 7 (37), 20919-29.
309. Wang, P.; Sun, Y.; Li, X.; Wang, L.; Xu, Y.; He, L.; Li, G., Recent advances in dual
recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A
review. Anal Chim Acta 2021, 1157, 338279.
310. Wen, J.; Song, F.; Du, Y.; Yu, W.; Qiang, R., Dendritic Silver Microstructures as Highly
Sensitive SERS Platform for the Detection of Trace Urea. IOP Conference Series:
Materials Science and Engineering 2019, 688, 033040.
154
311. Lai, Y.; Wang, C.; Shao, H., Thioctic Acid-Modified Silver Nanoplates on Copper Foil for
Low Interference Detection of Fluoranthene by Surface-Enhanced Raman Spectroscopy.
ACS Applied Nano Materials 2020, 3 (2), 1800-1807.
312. Mabbott, S.; Larmour, I. A.; Vishnyakov, V.; Xu, Y.; Graham, D.; Goodacre, R., The
optimisation of facile substrates for surface enhanced Raman scattering through galvanic
replacement of silver onto copper. Analyst 2012, 137 (12), 2791-8.
313. Chen, L.; Zhang, Z.; Chen, G.; Lai, C.; Zhou, H., Synthesis of silver particles on copper
substrates using ethanol-based solution for surface-enhanced Raman spectroscopy. AIP
Advances 2014, 4 (3), 031324.
314. Chee, S. W.; Tan, S. F.; Baraissov, Z.; Bosman, M.; Mirsaidov, U., Direct observation of
the nanoscale Kirkendall effect during galvanic replacement reactions. Nat Commun 2017,
8 (1), 1224.
315. Huang, N.; Short, M.; Zhao, J.; Wang, H.; Lui, H.; Korbelik, M.; Zeng, H., Full range
characterization of the Raman spectra of organs in a murine model. OPTICS EXPRESS
2011, 19 (23), 22892.
316. Fish-and-Fishery-Products-Hazards-and-Controls-Guidance-Chapter.
https://www.fda.gov/media/80319/download#:~:text=permit%20toxin%20development.-
,S.,500%2C000%20to%201%2C000%2C000%20per%20gram(accessed (accessed 04
August 2021).
317. Food poisoning associated with vibrio parahaemolyticus in hong kong current situation and
recommendation.
https://www.chp.gov.hk/files/pdf/food_poisoning_associated_with_vibrio_parahaemolyticu
155
s_in_hong_kong_current_situation_and_recommendations_r.pdf (accessed 04 August
2021).
318. Tegegne, W. A.; Mekonnen, M. L.; Beyene, A. B.; Su, W. N.; Hwang, B. J., Sensitive and
reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman
spectroscopy on silver nanocubes@polydopamine substrate. Spectrochim Acta A Mol
Biomol Spectrosc 2020, 229, 117940.
319. Tegegne, W. A.; Su, W.-N.; Beyene, A. B.; Huang, W.-H.; Tsai, M.-C.; Hwang, B.-J.,
Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive
and rapid detection of adenine. Microchemical Journal 2021, 168, 106349.

無法下載圖示 全文公開日期 2024/08/13 (校內網路)
全文公開日期 2028/08/13 (校外網路)
全文公開日期 2028/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE