簡易檢索 / 詳目顯示

研究生: 曾冠瑋
Kuan-wei Tseng
論文名稱: 純金屬和合金有序排列奈米管陣列的製備和性質分析
Elemental metal and alloy nanotube arrays with highly ordered periodicity: Fabrication and characterizations
指導教授: 朱瑾
Jinn P. Chu
口試委員: 江偉宏
Wei-Hung Chiang
陳詩芸
Shih-Yun Chen
邱昱誠
Yu-Cheng Chiu
郭浩中
Hao-Chung Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 122
中文關鍵詞: 階梯覆蓋微影製程純金屬和多元合金奈米管陣列
外文關鍵詞: step coverage, elemental metal, nanotube arrays
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 1 Abstract 2 Acknowledgements 4 Contents 5 List of Figures 9 List of Tables 15 Chapter 1. Introduction 16 1.1 Objectives of Study 17 Chapter 2. Literature Review 18 2.1 Physical vapor deposition (PVD) 18 2.1.1 Step coverage 18 2.1.2 Oblique angle physical vapor deposition (OAPVD) 19 2.2 Metallic glass (MG) 21 2.2.1 W-BMG systems 21 2.2.2 Thin-film metallic glass (TFMG) 22 2.2.3 W-TFMG systems 23 2.3 Nanotubes (carbon nanotubes, metallic oxide nanotubes, metallic nanotubes) 24 2.3.1 Fabrication of Carbon nanotubes 25 2.3.1.1 Synthesis of CNTs prepared via the chemical vapor deposition (CVD) method 26 2.3.1.2 Synthesis of CNTs prepared via arc discharge method 27 2.3.1.3 Synthesis of CNTs prepared via laser ablation method 28 2.3.2 Fabrication of metallic oxide nanotubes (TiO2, TiN) 29 2.3.2.1 Titanium oxide nanotube arrays prepared by anodic oxidation method 29 2.3.2.2 Titanium nitride nanotube arrays prepared by anodic oxidation method 29 2.3.3 Fabrication of metallic nanotubes (Pt-Cu and Co-Ni alloy) 30 2.3.3.1 Pt-Cu alloy nanotube arrays prepared by electrodeposition etching method 30 2.3.4 MG nanotube arrays 31 2.3.4.1 Surface characteristics of MGNT 33 2.3.4.2 Detection convenience of MGNT 35 2.3.4.3 Microstructural analysis for MGNT arrays 36 Chapter 3. Experimental Procedures 38 3.1 Metallic Nanotube Arrays (MeNTA) Fabrication (single layer) 39 3.1.1 Substrate and photoresist preparations 40 3.1.2 Deposition of metallic thin film (single layer) 41 3.1.3 Photoresist removal 41 3.2 Different methods of deposition 41 3.2.1 Working distance 42 3.2.2 Position of templates on holder 42 3.2.3 Speed of rotation 42 3.2.4 Template with tilting angle 43 3.2.5 Y axial rotation of templates 43 3.3 MeNTA fabrication (multilayer) 44 3.3.1 Substrate and photoresist preparations 44 3.3.2 Deposition of metallic thin films (multilayer) 45 3.3.3 Photoresist removal 46 3.4 Characterizations of thin films 46 3.4.1 Crystallographic analysis (XRD) 46 3.4.2 Chemical composition (EPMA) 47 3.4.3 Nanoidentation test 47 3.5 Characterizations of Nanotube arrays 47 3.5.1 Composition analysis and TEM specimen preparation (FIB) 48 3.5.2 DI water contact angle 49 3.5.3 Elemental Surface analysis (AES) 49 3.5.4 Microstructural analysis (TEM) 50 Chapter 4. Results and Discussion 51 4.1 SEM image of nanotube arrays in different diameter 51 4.2 Single layer of MeNTA 52 4.2.1 Surface morphology of MeNTA after ultrasonically-removing photoresist (1 layer) 52 4.2.2 SEM image of cross-section in MeNTAs before removing photoresist 53 SEM images of cross section in MeNTAs before removing photoresist 54 4.2.3 EDS results of MeNTAs 54 4.2.4 Effect of small aspect ratio in single layer-MeNTA 56 4.3 Deposition of different methods on contact-hole templates 57 4.3.1 Effect of working distance 57 4.3.2 Effect of position on holder 59 4.3.3 Effect of speed of rotation 60 4.3.4 Effect of tilting angle 61 4.3.5 Effect of Y axial rotation of templates 62 4.3.6 Evaluation of ultrasonically removing photoresist 62 4.4 Multilayer of MeNTA (2 layer) 64 4.4.1 Surface morphology of MeNTAs after removing top layer using tweezer. (2 layer) 64 4.4.2 SEM image of cross section in MeNTAs before removing photoresist. (2 layer) 66 SEM image of cross section in MeNTAs before removing photoresist 66 4.4.3 Multilayer of MeNTAs (3 layers) 67 4.4.4 Comparison of surface morphology between single layer and multilayer (3 layers) of MeNTAs 67 4.4.5 Effect of W-Ni-B deposition time for SS316-MeNTA 70 4.4.6 Comparison of cross section between single layer and multilayer of MeNTAs 71 SEM image of cross-section in MeNTAs before removing photoresist 71 SEM image of cross-section in MeNTAs before removing photoresist 72 4.4.7 7075 Al-MeNTA failed sample 73 4.4.8 Ag-MeNTA 74 4.5 Characteristic of Metallic single layer and multilayer 75 4.5.1 Chemical composition (EPMA) 75 4.5.2 XRD results on single layer and multilayer of metallic films 76 4.6 MeNTA 78 4.6.1 Surface morphology and elemental analysis (SEM and EDS) 78 4.6.2 Surface properties (water contact angle) 83 4.6.3 Auger analysis (Auger) 89 4.6.4 Microstructural analysis (TEM) 93 4.6.5 Strengthening mechanism 108 Chapter 5. Conclusions 111 Chapter 6. Reference 112 Appendix 117

[1] R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes--the route toward applications, science 297(5582) (2002) 787-792.
[2] W.-T. Chen, S.-S. Li, J.P. Chu, K.C. Feng, J.-K. Chen, Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance, Biosensors and Bioelectronics 102 (2018) 129-135.
[3] J.-K. Chen, W.-T. Chen, C.-C. Cheng, C.-C. Yu, J.P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Materials Today 21(2) (2018) 178-185.
[4] Y.-C. Lu, Metallic-Glass Nanotube Arrays as a Surface-Enhanced Raman Scattering (SERS)-active Substrate for Crystal Violet Adsorption, NTUST, 2019.
[5] W. Arden, The International Technology Roadmap for Semiconductors—Perspectives and challenges for the next 15 years, Current Opinion in Solid State and Materials Science 6 (2002) 371-377.
[6] U. Helmersson, M. Lattemann, J. Bohlmark, A. Ehiasarian, J. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films 513 (2006) 1-24.
[7] T. Smy, L. Tan, K. Chan, R.N. Tait, J.N. Broughton, S.K. Dew, M.J. Brett, A simulation study of long throw sputtering for diffusion barrier deposition into high aspect vias and contacts, IEEE Transactions on Electron Devices 45(7) (1998) 1414-1425.
[8] S.M. Rossnagel, D. Mikalsen, H. Kinoshita, J.J. Cuomo, Collimated magnetron sputter deposition, Journal of Vacuum Science & Technology A 9(2) (1991) 261-265.
[9] S.M. Rossnagel, Directional and ionized physical vapor deposition for microelectronics applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16(5) (1998) 2585-2608.
[10] T. Karabacak, T.-M. Lu, Enhanced step coverage by oblique angle physical vapor deposition, Journal of Applied Physics 97 (2005) 124504-124504.
[11] P. Yiu, W. Diyatmika, N. Bönninghoff, Y.-C. Lu, B.-Z. Lai, J.P. Chu, Thin film metallic glasses: Properties, applications and future, Journal of Applied Physics 127(3) (2020) 030901.
[12] W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature 187(4740) (1960) 869-870.
[13] Y. An, G. Hou, X. Zhao, G. Liu, H. Zhou, J. Chen, Microstructure and tribological properties of iron-based metallic glass coatings prepared by atmospheric plasma spraying, Vacuum 107 (2014) 132–140.
[14] J. Eckert, J. Das, S. Pauly, C. Duhamel, Mechanical properties of bulk metallic glasses and composites, Journal of Materials Research 22 (2007) 285-301.
[15] A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Materialia 48 (2000) 279-306.
[16] A. Inoue, A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys, Acta Materialia - ACTA MATER 59 (2011) 2243-2267.
[17] M.K. Tam, S.J. Pang, C.H. Shek, Corrosion behavior and glass-forming ability of Cu–Zr–Al–Nb alloys, Journal of Non-crystalline Solids - J NON-CRYST SOLIDS 353 (2007) 3596-3599.
[18] W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bulletin 24(10) (1999) 42-56.
[19] T. Masumoto, K. Suzuki, N.K. Gakkai, Proceedings of the Fourth International Conference on Rapidly Quenched Metals: Sendai, Japan, August 24-28, 1981, Japan Institute of Metals1982.
[20] K. Wang, D. Pan, M.W. Chen, W. Zhang, X.M. Wang, A. Inoue, Measuring Elastic Energy Density of Bulk Metallic Glasses by Nanoindentation, MATERIALS TRANSACTIONS 47(8) (2006) 1981-1984.
[21] S. Madge, A. Caron, R. Gralla, G. Wilde, S. Mishra, Novel W-based metallic glass with high hardness and wear resistance, Intermetallics 47 (2014) 6–10.
[22] M. Ohtsuki, R. Tamura, S. Takeuchi, S. Yoda, T. Ohmura, Hard metallic glass of tungsten-based alloy, Applied Physics Letters 84 (2004).
[23] J. Chu, J. Greene, S.C. Jang, J. Huang, Y.-L. Shen, P. Liaw, Y. Yokoyama, A. Inoue, T. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Materialia 60 (2012) 3226–3238.
[24] J. Chu, S.C. Jang, J. Huang, H.S. Chou, Y. Yang, J. Ye, Y. Wang, J.-W. Lee, F.X. Liu, P. Liaw, Y.C. Chen, C.M. Lee, C. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520 (2012) 5097–5122.
[25] J.P. Chu, C.M. Lee, R.-T. Huang, P. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surface & Coatings Technology - SURF COAT TECH 205 (2011) 4030-4034.
[26] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, Device and Process Technologies for MEMS and Microelectronics, International Society for Optics and Photonics, 1999, pp. 97-108.
[27] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. Chu, S.C. Jang, Y. Gao, P. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films 561 (2014) 2–27.
[28] J. Musil, F. Kunc, H. Zeman, H. Polakova, Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings, Surface and Coatings Technology 154(2-3) (2002) 304-313.
[29] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246(1-2) (2000) 1-11.
[30] A.C. Fischer-Cripps, Contact mechanics, Nanoindentation, Springer2004, pp. 1-20.
[31] P. Andersen, J. Bøttiger, K. Dyrbye, I. Hutchings, K. Rutherford, A. Wroblewski, Mechanical properties of amorphous Ta100− xCrx thin films, Materials Science and Engineering: A 226 (1997) 871-873.
[32] C. Chiang, J. Chu, F. Liu, P. Liaw, R. Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements, Applied physics letters 88(13) (2006) 131902.
[33] C.-Y. Chuang, J.-W. Lee, C.-L. Li, J.P. Chu, Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass, Surface and Coatings Technology 215 (2013) 312-321.
[34] H. Jehn, G. Reiners, N. Siegel, Characterisierung dünner schichten, DIN Fachbericht 39, Beuth Verlag, Berlin–Wien–Zürich, 1993.
[35] J.-C. Chang, J.-W. Lee, B. Lou, C.-L. Li, J. Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr-W-Ti thin film metallic glasses, Thin Solid Films 584 (2015).
[36] S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare, Chemical Society Reviews 46(1) (2017) 158-196.
[37] J. Hutchison, N. Kiselev, E. Krinichnaya, A. Krestinin, R. Loutfy, A. Morawsky, V. Muradyan, E. Obraztsova, J. Sloan, S. Terekhov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method, Carbon 39(5) (2001) 761-770.
[38] X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, Y. Ando, Preparation of high-grade carbon nanotubes by hydrogen arc discharge, Carbon 35(6) (1997) 775-781.
[39] Y. Ando, S. Iijima, Preparation of carbon nanotubes by arc-discharge evaporation, Japanese Journal of Applied Physics Part 2 Letters 32 (1993) L107-L107.
[40] Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science 304(5668) (2004) 276-278.
[41] J.-F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chemical Physics Letters 317(1-2) (2000) 83-89.
[42] J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chemical Physics Letters 292(4-6) (1998) 567-574.
[43] C. Kocabas, M.A. Meitl, A. Gaur, M. Shim, J.A. Rogers, Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation, Nano letters 4(12) (2004) 2421-2426.
[44] Y. Zhang, H. Gu, S. Iijima, Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere, Applied physics letters 73(26) (1998) 3827-3829.
[45] C. Journet, W. Maser, P. Bernier, A. Loiseau, M.L. de La Chapelle, d.S. Lefrant, P. Deniard, R. Lee, J. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, nature 388(6644) (1997) 756-758.
[46] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis, Journal of Materials Chemistry 21(40) (2011) 15872-15884.
[47] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, Journal of nanoscience and nanotechnology 10(6) (2010) 3739-3758.
[48] G. Tripathi, B. Tripathi, M. Sharma, Y. Vijay, A. Chandra, I. Jain, A comparative study of arc discharge and chemical vapor deposition synthesized carbon nanotubes, international journal of hydrogen energy 37(4) (2012) 3833-3838.
[49] N. Arora, N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and related materials 50 (2014) 135-150.
[50] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical physics letters 243(1-2) (1995) 49-54.
[51] J. Nagy, G. Bister, A. Fonseca, D. Mehn, Z. Konya, I. Kiricsi, Z. Horvath, L. Biro, On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts, Journal of Nanoscience and Nanotechnology 4(4) (2004) 326-345.
[52] S. Arepalli, Laser ablation process for single-walled carbon nanotube production, Journal of nanoscience and nanotechnology 4(4) (2004) 317-325.
[53] M. Zhang, M. Yudasaka, S. Iijima, Single-wall carbon nanotubes: a high yield of tubes through laser ablation of a crude-tube target, Chemical physics letters 336(3-4) (2001) 196-200.
[54] H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, Y. Achiba, Diameter control of single-walled carbon nanotubes, Carbon 38(11-12) (2000) 1691-1697.
[55] N. Braidy, M. El Khakani, G. Botton, Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd: YAG laser vaporization method, Carbon 40(15) (2002) 2835-2842.
[56] D. Nishide, H. Kataura, S. Suzuki, K. Tsukagoshi, Y. Aoyagi, Y. Achiba, High-yield production of single-wall carbon nanotubes in nitrogen gas, Chemical Physics Letters 372(1-2) (2003) 45-50.
[57] H. Zhang, Y. Ding, C. Wu, Y. Chen, Y. Zhu, Y. He, S. Zhong, The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature, Physica B: Condensed Matter 325 (2003) 224-229.
[58] A. Dillon, P. Parilla, J. Alleman, J. Perkins, M. Heben, Controlling single-wall nanotube diameters with variation in laser pulse power, Chemical Physics Letters 316(1-2) (2000) 13-18.
[59] N. Mehra, N. Jain, Functionalized carbon nanotubes and their drug delivery applications, Section nanostructured drug delivery. Multi volume nanomedicine 4 (2014) 327-9.
[60] J. Li, R. Wu, X. Yang, MoS2 Modified TiN Nanotube Arrays for Advanced Supercapacitors Electrode, Physica E: Low-dimensional Systems and Nanostructures (2020) 113951.
[61] S. Parajuli, M. Irfan, X. Zhang, K. Javed, J. Feng, X. Han, Diameter dependent structural and magnetic properties of CoNi alloy nanotubes, Journal of Magnetism and Magnetic Materials 500 (2020) 166264.
[62] X. Zhang, D. Li, D. Dong, H. Wang, P.A. Webley, One-step fabrication of ordered Pt–Cu alloy nanotube arrays for ethanol electrooxidation, Materials Letters 64(10) (2010) 1169-1172.
[63] W.-T. Chen, K. Manivannan, C.-C. Yu, J.P. Chu, J.-K. Chen, Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass, Nanoscale 10(3) (2018) 1366-1375.
[64] J.-K. Chen, J.-H. Wang, C.-C. Cheng, F.-H. Ko, Fabrication of biomimetic device with PS-b-PNIPAAm copolymer pillars mimicking a gecko foot pad, Sensors and Actuators B: Chemical 174 (2012) 332-341.
[65] C. Chang, C. Lee, J. Chu, P. Liaw, S. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass, Thin Solid Films 616 (2016) 431-436.
[66] S.H. Kim, Y.J. Baik, D. Kwon, Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings, Surface and Coatings Technology 187(1) (2004) 47-53.
[67] C. Huang, Y. Wang, X. Ma, S. Yin, H. Höppel, M. Göken, X. Wu, H. Gao, Y. Zhu, Interface affected zone for optimal strength and ductility in heterogeneous laminate, Materials Today 21(7) (2018) 713-719.

無法下載圖示 全文公開日期 2025/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE