簡易檢索 / 詳目顯示

研究生: 林高田
Gao-Tian Lin
論文名稱: 超音波變幅桿設計於脂溶性成分萃取之研究
Design of ultrasonic horn on extraction of fat-soluble ingredients
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 賴進此
Jinn-Tsyy Lia
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 超音波萃取聲化學效應(空蝕效應)變幅桿Luminol微弧氧化
外文關鍵詞: ultrasonic extraction, cavitation, horn, Luminol, micro discharge oxidation
相關次數: 點閱:200下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在食品科技中,萃取是一項重要技術,但傳統的萃取方式須使用大量有機溶劑,若去除不完全,對人體有刺激性,且萃取所需時間長,因此許多更有效之技術相繼被開發,其中超音波萃取不僅可提高效率,且可以食用油當作溶劑,改善對食品毒化問題,因此本論文提出以變幅桿式超音波萃取脂溶性成分並探討其效率,在葵花油中萃取含有DHA成分之微藻。
    首先,以ANSYS模擬設計4組變幅桿型態,相較以往大多只探討放大振幅型態外,另外再提出在變幅桿上加上結構的可能性,雖然增加結構或改變幾何形狀會對固有頻率造成影響,但只需在形狀上做些調整,並在應力部分也考慮材料之疲勞強度,即可設計出穩定工作之變幅桿。A、B組以放大振幅型態為設計,C組探討增加結構影響,D組結合放大振幅與加結構輔助,結果顯示,振幅增加後對萃取效率有增加效果,加上板片結構亦然,最後以加上結構且振幅最大的變幅桿D2,20分鐘萃取效率高達97%,相較於最基本圓柱型態的38%,效率確實增加許多。實驗中也利用Luminol反應觀察各型態產生之聲化學效應範圍及強度,驗證了振幅越大光強度越強的效果,加上結構後也可增加聲化學效應反應範圍,而最後利用傳統溶劑方式萃取作為對照組,6小時僅12%,證實超音波萃取的高效率。
    由於超音波的高能高強度,對於比熱小的脂溶性成分來說,溫度急速上升,其可能會使油品產生劣化現象,以油品酸價試紙觀察,在3分鐘內酸價值高達4.0,因此另外開發一套密閉設備,附有真空、攪拌、超音波破胞、冷卻系統等功能,萃取5小時後,劣化值在2.0以下,提出在控制環境氣體與適當冷卻環境中,有機會改善超音波造成油品劣化的可能性,也做為未來量產型設備的雛型機台。
    最後,在萃取的過程中,變幅桿本體可能會受聲化學效應的磨耗侵蝕,因此另外以微弧氧化技術在鋁合金上鍍上陶瓷膜,結果顯示,經過表面處理過後,5小時磨耗程度僅為未經鍍膜的鋁合金的1/2,可作為未來在變幅桿抗聲化學侵蝕的一項技術。


    For food science technology, extraction is an important process. In the traditional method, it needs large amounts of organic solvents and the organic solvent may have some ingredients irritant to the human body. Besides, the traditional method usually takes a long time to process. Hence, many methods have been proposed to overcome the problems. Among these methods, ultrasonic extraction not only can improve the efficiency but also can use the edible oil as the extraction solvent. In this thesis, we used the horn type ultrasonic extraction method to extract the fat-soluble ingredients with the edible oil.
    First, we applied ANSYS simulation software for horn design and divided them into four groups. In this research work, we discussed the possibility of modifying the geometrical design of the horn to impove the extraction efficiency. If the geometry was changed, there are some influence of the ultrasonic frequency. Our design needed to make some adjustments in length. Group A and B were designed to enlarge the amplitude, and group C was added structure on the horn without amplifying the amplitude. Group D combines the results of Group A, B, C of magnification the amplitude and adding structure on the horn. After conducting the test, we found that the D2 type which has the structure and the largest amplitude has the highest efficiency. With D2 type, we were able to achieve 97% efficiency in twenty minutes of extraction time and the A1 type which is the simplest one just reach 38%. In the experiment, we also used Luminol reaction to observe the range and intensity of the cavitation to verify the simulation results. In the results, we observed that the light is stronger in the amplifying amplitude type and the structure type. Finally, we test the traditional methods to extract the same ingredients in n-hexane and sunflower oil as the solvent. In the hexane sample, it just has 12 % after 6 hours extraction.
    There are still some problems in the ultrasonic extraction. Due to the high energy of ultrasonic, it may cause high temperature, which may cause the deterioration of the oil with 3.0-4.0 of acid value determined by acid dipstick. As the preferred value is under 2.0, we designed an apparatus, which combines the functions of vacuum, protective gas, stirring, cooling and ultrasonic system to overcome this problem. We conducted our experiment on our designed apparatus and we found the acid value is around 2.0 after five hours of extraction. So, this apparatus offered a promissing approach to alleviate the deterioration problem.
    We also found that the horn was worn out severely because of cavitation. We used micro discharge oxidation process to coat a ceramic film on the Al specimen to improve the wear resistance. After 5 hours wear test, we found that the mass loss of the specimen with coating was less 50% than the specimen without coating. So, the MDO technology could provide the horn with effective protection for the future application.

    中文摘要 …………………………………………………………………………… I Abstract …………………………………………………………………………… III 致謝 ……………………………………………………………………………V 目錄 ……………………………………………………………………………… VI 圖目錄 …………………………………………………………………………… IX 表目錄 …………………………………………………………………………… XII 第一章 緒論……………………………………………………………………… 1 文獻回顧…………………………………………………………………………… 2 1.1萃取技術與生物科技相關文獻…………………………………………… 2 1.1.1 傳統萃取方法………………………………………………… 2 1.1.2 微波萃取法…………………………………………………… 3 1.1.3 超臨界流體萃取法………………………………………………… 4 1.1.4 超音波萃取法………………………………………………… 4 1.2 超音波變幅桿設計……………………………………………………… 8 1.3 空蝕效應對於材料磨耗………………………………………………… 10 1.4 研究動機與目的………………………………………………………… 11 第二章 基本原理與理論………………………………………………………… 13 2.1 超音波特性……………………………………………………………… 13 2.2 超音波萃取-聲化學效應………………………………………………… 15 2.3 超音波系統設備…………………………………………………… 17 2.4 變幅桿設計原理-公式解析法………………………………………… 22 2.5 ANSYS有限元素分析………………………………………………… 25 2.5.1 有限元素法簡介……………………………………………………25 2.5.2 ANSYS簡介………………………………………………………25 2.5.3 ANSYS動力分析…………………………………………………28 2.5.4 模態分析…………………………………………………………29 2.5.5 諧響應分析…………………………………………………………30 2.6 微弧氧化原理………………………………………………………… 31 第三章 實驗方法與設備……………………………………………………………34 3.1 研究材料之選擇………………………………………………………… 34 3.2 實驗規劃與步驟……………………………………………………… 36 3.2.1 變幅桿設計與萃取實驗規劃……………………………………36 3.2.2微弧氧化實驗規劃………………………………………………37 3.3 實驗設備……………………………………………………………… 38 3.3.1 萃取設備……………………………………………………………38 3.3.2微弧氧化設備………………………………………………………40 3.4 檢測設備………………………………………………………………… 41 3.4.1 頻率量測……………………………………………………………41 3.4.2 高效液相色譜法…………………………………………………41 3.4.3 掃描式電子顯微鏡…………………………………………………43 3.4.4 X光繞射分析儀 (XRD)……………………………………………44 3.4.5油品劣化試紙………………………………………………………45 3.4.6 Luminol螢光反應…………………………………………………46 第四章 結果與討論…………………………………………………………………48 4.1模擬基本數據與概念………………………………………………… 49 4.2 模擬變幅桿與小量萃取實驗比較………………………………… 54 4.2.1 DHA標準曲線量測與萃取率計算………………………………54 4.2.2 A組-圓柱型態變幅桿 (振幅比較一)……………………………58 4.2.3 B組-圓柱型態變幅桿 (振幅比較二)…………………………62 4.2.4 C組- 加板片結構………………………………………………66 4.2.5 D組- 加結構並放大振幅比較…………………………………71 4.2.6 油品劣化氧化…………………………………………………77 4.3量產型設備萃取………………………………………………………… 78 4.4 微弧氧化與抗磨耗測試………………………………………………… 84 第五章 結論…………………………………………………………………………89 參考文獻……………………………………………………………………………91

    1.ANA Aryee, Benjamin K. Simpson. “Comparative studies on the yield and quality of solvent-extracted oil from salmon skin” Journal of Food Engineering, Vol. 92, pp.353-358, (2009).
    2.Edward L. Randall,” EXTRACTOR ASSEMBLY” United States Patent 3798133, (1974).
    3.Dnyaneshwar Jadhav, Rekha B.N., Parag R. Gogate, Virendra K. Rathod. ” Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction” Journal of Food Engineering, Vol. 93, pp.421-426, (2009).
    4.Marie E. Lucchesi, Farid Chemat, Jacqueline Smadja.” Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation” Journal of Chromatography A, Vol. 1043, pp. 323-327, (2004).
    5.Miguel Herrero, Alejandro Cifuentes, Elena Iban˜ez. “Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae, A review” Food Chemistry, Vol. 98, pp. 136-148 , (2006).
    6.A. Molero Gbmez, C. Pereyra Lopez, E. Martinez de la Ossa. “Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction: a comparison with conventional solvent extraction” The Chemical Engineering Journal, Vol. 61, pp. 227-231, (1996).
    7.Mircea Vinatoru. “An overview of the ultrasonically assisted extraction of bioactive principles from herbs” Ultrasonics sonochemistry, Vol. 8, pp.303-313, (2001).
    8.Mar Villamiel, Peter de Jong. “Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating” Journal of Food Engineering, Vol. 45, pp. 171-179, (2000).
    9.Kashif Ghafoor, Yong Hee Choi, Ju Yeong Jeon, In Hee Jo. “Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds” Journal of agricultural and food chemistry, Vol. 57, pp. 4988-4994, (2009).
    10.Yvonne C. Chukwumah, Lloyd T. Walker, Martha Verghese, Simon Ogutu. “Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea)” Ultrasonics Sonochemistry , Vol. 16, pp. 293–299, (2009).
    11.Maurıcio A. Rostagno, Julio M.A. Araujo, Delcio Sandi. “Supercritical fluid extraction of isoflavones from soybean flour” Food Chemistry, Vol. 78, pp. 111–117, (2002).
    12.S. Balachandran, S.E. Kentish, R. Mawson, M. Ashokkumar. “Supercritical fluid extraction of isoflavones from soybean flour” Ultrasonics Sonochemistry, Vol.13, pp. 471-479, (2006).
    13.S.F. Hamed, “Edible Oil as an Alternate Solvent for Extraction of Antioxidant Components from Natural Herbs” Journal of Applied Sciences Research, Vol.2, pp. 567-571, (2006).
    14.Sebastien Veillet, Valerie Tomao, Farid Chemat. “Ultrasound assisted maceration: An original procedure for direct aromatization of olive oil with basil” Food Chemistry, Vol. 123, pp. 905-911, (2010).
    15.Farid Chemat, Sandrine Perino-Issartier, Lynda Loucif, Mohamed Elmaataoui, Timothy J. Mason. “Enrichment of edible oil with sea buckthorn by-products using ultrasound-assisted extraction” European Journal of Lipid Science and Technology, Vol.114, pp. 453–460, (2012).
    16.Liyan Zhao, Guanghua Zhao, Fang Chen, Zhengfu Wang, Jihong Wu, Xiaosong Hu “Different Effects of Microwave and Ultrasound on the Stability of (all-E)-Astaxanthin” Journal of Agricultural and Food Chemistry, Vol.54, pp. 8346-8351, (2006).
    17.Yvonne Schneider, Susann Zahn, Jorg Hofmann , Mike Wecks , Harald Rohm.” Acoustic cavitation induced by ultrasonic cutting devices: A preliminary study” , Ultrasonics Sonochemistry, Vol.13, pp.117-120, (2006).
    18.Maria Patrick, Renoo Blindt , Jo Janssen.” The effect of ultrasonic intensity on the crystal structure of palm oil” Ultrasonics Sonochemistry, Vol.11, pp. 251-255, (2004).
    19.R. W. Wood, For. Mem. R.S., Alfred L. Loomis,”The Physical and Biological Effects of High Frequence Sound Waves of Great Intensit,” Philosophical Magazine, Vol.4, pp. 417-436, (1927).
    20.S.G. Amin, M.H.M. Ahmed, H.A. Youssef, ”Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis” Journal of Materials Processing Technology, Vol.55, pp. 254-260, (1995)
    21.M. Roopa Rani, R. Rudramoorthy. ” Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding” Ultrasonics, Vol.53, pp. 763-772, (2013)
    22.E. Shamoto, N. Suzuki, E. Tsuchiya, Y. Hori, H. Inagaki, K. Yoshino. “Development of 3 DOF Ultrasonic Vibration Tool for Elliptical Vibration Cutting of Sculptured Surfaces” CIRP Annals-Manufacturing Technology, pp. 321-324, (2005)
    23.Kei-Lin Kuo, “Design of rotary ultrasonic milling tool using FEM simulation” journal of materials processing technology, Vol.201, pp. 48-52, (2008)
    24.Zhiqiang Fu, Xiaojun Xian, Shuyu Lin, Chenghui Wang, Wenxu Hu, Guozheng Li. “Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode”, Ultrasonics, Vol. 52, pp. 578-586, (2012)
    25.Sergei L. Peshkovsky, Alexey S. Peshkovsky. “Matching a transducer to water at cavitation: Acoustic horn design principles”, Ultrasonics Sonochemistry, Vol.14, pp. 314-322, (2007)
    26.喻 强,等人, ”ANSYS輔助楔形超聲波據能器的優化設計和實驗研究”,聲學技術,Vol. 29, (2010)
    27.楊證民, “提升超音波精密加工之變幅桿穩定度研究 ”, 國立台灣科技大學機械工程系碩士論文, (2011).
    28.賴建宇, “高強度超音波與氣泡空蝕場應用於奈米粉體製備與養分萃取”, 國立成功大學機械工程系碩士論文, (2005)
    29.G. Hunter, M. Lucas, I. Watson, R. Parton, “A radial mode ultrasonic horn for the inactivation of Escherichia coli K12”, Ultrasonics Sonochemistry, Vol.15, pp. 101-109, (2008)
    30.王巧霞, “ 聲致發光法量測超聲空化場的實驗研究”, 陝西師範大學學報, (2008)
    31.Alexei Moussatov, Christian Granger, Bertrand Dubus,”Cone-like bubble formation in ultrasonic cavitation field”, Ultrasonics Sonochemistry, Vol.10, pp. 191-195, (2003)
    32.W.J. Tomlinson, N. Kalitsounakis, G. Vekinis. “Cavitation erosion of aluminas”, Ceramics International, Vol. 25, pp. 331-338, (1999)
    33.David Niebuhr, “Cavitation erosion behavior of ceramics in aqueous solutions”, Wear, Vol. 263, pp. 295-300, (2007)
    34.Feng Cheng, Shuyun Jiang,, Jun Liang, “Cavitation erosion resistance of microarc oxidation coating on aluminium alloy”, Applied Surface Science, Vol.280, pp. 287-296, (2013)
    35.陳麒元, “利用微弧氧化法在6061鋁合金上鍍製ZrO2/Al2O3氧化膜之研究”, 國立台灣科技大學機械工程系碩士論文, (2014).
    36.鍾喬森, “脈衝波形對6061鋁合金使用微弧氧化法鍍製ZrO2/Al2O3陶瓷膜之影響”, 國立台灣科技大學機械工程系碩士論文, (2015).
    37.Jean Pierre Franc, Jean Marie Micheal. ”Fundamentals of cavitation” KLUWER ACADEMIC Publishers, (2004)
    38.Kenneth S. Suslick, Gareth J. Price. “Applications of ultrasound to materials chemistry” Annual Review of Materials Science, Vol 29, pp. 295-326, (1999)
    39.Ana Cristina Soria, Mar Villamiel, “Effect of ultrasound on the technological properties and bioactivity of food: a review” Trends in Food Science & Technology, Vol 21, pp. 323-331, (2010)
    40.T. B. Thoe, D. K. Aspinwall, M.L.H. Wise, “Review on ultrasonic machining,” International Journal of Machine Tools and Manufacture, Vol. 38, pp. 239-255, (1998).
    41.賴耿陽, “超音波工學理論與實務,” 復漢出版社, (2001).
    42.陳精一, “ANSYS振動學實務分析,” 高立圖書有限公司, (2005).
    43.蔡國忠, “有限元素分析及工程應用 ANSYS Workbench,” 易習圖書出版, (2013)
    44.材料特性資料庫:http://www.matweb.com/
    45.H. T. Chen, C. H. Hsiao, H. Y. Long, C. J. Chung, C. H. Tang, K. C. Chena and J. L. He, “Micro-arc oxidation of β-titanium alloy: structural characterization and osteoblast compatibility”, Surface and Coatings Technology, Vol. 204 , pp.1126-1131, (2009)
    46.Yang Guangliang, L. Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsum, “The effects of current density on the phase composition and microstructureproperties of micro-arc oxidation coating”,Journal of Alloys and Compounds, Vol. 345, pp.196-200, (2002).
    47.L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, A. Matthews. “Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions”, ElectrochimicaActa, Vol.49, pp. 2085–2095, (2004).
    48.A.L. Yerokhin, X. Nie , A. Leyland , A. Matthews , S.J. Dowey, “ Plasma electrolysis for surface engineering, Surface and Coatings Technology, Vol. 122, pp. 73-93, (1999).
    49.鐘時俊,O. Demine,翁榮洲,微電弧氧化表面處理原理與應用,工業材料雜誌, Vol.194, pp. 176-180, (2003).
    50.葉正良,等人,”海狗油中OMEGA 3不飽和脂肪酸的測定方法” 中華人民共和國國家知識產權局, 發明專利, CN 1920554 B, (2002)

    QR CODE