簡易檢索 / 詳目顯示

研究生: 王建貿
Jian-mao Wang
論文名稱: 微弧氧化鋁合金6061製備綠色顏料膜層
Green pigment coating through micro arc oxidation of aluminum alloy 6061
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周振嘉
none
蘇威年
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 微弧氧化綠色顏料鋁合金6061微弧氧化著色氧化鉻
外文關鍵詞: micro arc oxidation, green pigment, aluminum alloy 6061, micro arc oxidation coloring, chromium oxide
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微弧氧化法(Micro arc oxidation)著色相當困難,因為微弧氧化層不同於陽極處理具備規則性的孔洞構造。此研究顯示,透過添加帶負電荷之顏料微粒子到電解液中,可達到均勻著色的目的。我們選擇鉻綠顏料微粒將鋁合金6061表面著色,說明此技術的可行性。結果顯示在定電壓模式下,具負電荷之顏料微粒會使得氧化電流與能量消耗大幅上升。因此我們將著色製程分為兩階段,第一階段是使用定電壓模式在沒有添加顏料的情況下鍍製阻障層;第二階段則是採用定電流模式並添加顏料來生成綠色膜層。但若第二階段的參數設定不好,則正電壓會急遽上升使製程中止。鉻綠顏料與alpha相氧化鋁具有相同的六方晶相,雖然商業鉻綠顏料及自行合成的鉻綠粉末,都屬於高度缺氧相的氧化鉻(defective Cr2O2.4),但完成著色的綠色膜層則轉變成未缺氧的六方晶相Cr2O3。商業顏料製備之綠色膜層的微觀結構分析下,是由兩層所組成;上層以50%氧化鉻與50%氧化鋁所組成,而下方緻密層幾乎為氧化鋁,總膜厚會隨著佔空比或電流比上升而上升。使用10 g dm-3鉻綠顏料進行鋁合金6061的MAO著色,在電流密度為92mA cm-2、頻率500Hz、佔空比20%及電流比1.0下鍍製40分鐘能得到最佳膜層。


    Coloring aluminum alloys with micro arc oxidation (MAO) technique is quite difficult, because, unlike anodizing, the MAO coating does not contain regular pore structure. This study demonstrates that we are capable of achieving uniform coloring via addition of negatively charged pigment nanoparticles in the electrolyte. We select green chromia pigment to color the surface of aluminum alloy 6061 and show the feasibility of MAO coloring. Experimental results indicate the pigment particles, with adsorbed negative charge, drastically raise the oxidation current and the power consumption under the constant-voltage mode. Hence we divide the coloring operation into two steps, first depositing a barrier layer without pigment using the constant-voltage mode, second growing a green layer with pigment under the constant-current mode. Still, the positive voltage of the second step easily runs away if the electrical parameters are not set properly. The phases of chromia oxide and α-alumina are isostructural. Although commercial chromia pigment and in-house chromia powder are highly defective chromium oxide, Cr2O2.4, yet the green layer turns into a much less oxygen deficient crystal with parameters similar to those of hexagonal Cr2O3. Microstructure analysis of commercial powder precursor shows the green coating consists of two layers; the top layer contains approximately 50% chromia and 50% alumina, a dense layer underneath contains ~100% alumina. The total thickness increases with increasing duty ratio, or increasing ratio of positive (I+) divided by negative current (I-). With 10 g dm-3 pigment in the electrolyte for green coating on aluminum alloy 6061 for 40 minute, the optimal parameters are 92 mA cm-2 in current density, 500 Hz in frequency, 20% in duty ratio, and 1.0 in the I+/I- ratio.

    目 錄 摘 要 I ABSTRACT II 目 錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 5 2.1 陽極處理 5 2.2 微弧氧化處理技術 7 第三章 實驗方法與步驟 19 3.1 實驗藥品耗材與儀器設備 19 3.2 實驗流程 22 3.3 鑑定與分析 30 第四章 結果與討論 33 4.1 合成氧化鉻與商用氧化鉻顏料粉末 33 4.2 動態光散射儀分析色漿 36 4.3 定電壓模式製備商用顏料之MAO綠色膜層 40 4.4 定電流模式製備商用顏料之MAO綠色膜層 43 4.5 定電流模式製備合成氧化鉻之MAO綠色膜層 66 4.6 MAO膜層硬度測試 70 第五章 結論 72 第六章 參考文獻 73

    1.Lugovskoy, A. and M. Zinigrad, Plasma electrolytic oxidation of valve metals. 2013.
    2.Parfenov, E., et al., Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling. Surface and Coatings Technology, 2015. 269: p. 2-22.
    3.Walsh, F., et al., Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF, 2009. 87(3): p. 122-135.
    4.Lohrengel, M., Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering: R: Reports, 1993. 11(6): p. 243-294.
    5.Blawert, C., et al., Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Advanced Engineering Materials, 2006. 8(6): p. 511-533.
    6.Ko, Y., et al., An electrochemical analysis of AZ91 Mg alloy processed by plasma electrolytic oxidation followed by static annealing. Journal of Alloys and Compounds, 2011. 509: p. S468-S472.
    7.Kasalica, B., et al., The influence of aluminum treatment and anodizing conditions on the galvanoluminescence properties of porous oxide films formed in sulfuric acid solution. Electrochemistry Communications, 2005. 7(7): p. 735-739.
    8.Tsangaraki-Kaplanoglou, I., et al., Effect of alloy types on the anodizing process of aluminum. Surface and Coatings Technology, 2006. 200(8): p.2634-2641.
    9.Mcneill, W., Method of making cadmium niobate. 1958, Google Patents.
    10.Mcneill, W., Anodic spark reaction processes and articles. 1966, Google Patents.
    11.Voevodin, A., et al., Characterization of wear protective Al瑖 Si瑖 O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface and Coatings Technology, 1996. 86: p. 516-521.
    12.Snizhko, L., et al., Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films, 2007. 516(2): p. 460-464.
    13.Jaspard-Mecuson, F., et al., Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coatings Technology, 2007. 201(21): p. 8677-8682.
    14.Zheng, H., et al., The effects of Na 2 WO 4 concentration on the properties of microarc oxidation coatings on aluminum alloy. Materials Letters, 2005. 59(2): p. 139-142.
    15.王亚明, Ti6Al4V 合金微弧氧化涂层的形成机制与摩擦学行为. 2006, 哈滨: 哈滨工业大学.
    16.Yerokhin, A., et al., Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surface and Coatings Technology, 2005. 199(2): p. 150-157.
    17.Yerokhin, A., et al., Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings Technology, 2000. 130(2): p. 195-206.
    18.Weng, F., et al., Effects of Pulse Duty Cycles on Microarc Oxidation Formed on Al. Biaomian Jishu(Surface Technology), 2005. 34(5): p. 59-62.
    19.张以忱, 徐辉, and 杨英福. 铝合金表面微弧氧化脉频率优化研究. in 真空冶金与表面工程——第八届真空冶金与表面工程学术会议论文集. 2007.
    20.Rozenfelʹd, I.L.v., Corrosion inhibitors. 1981: McGraw-Hill Companies.
    21.Koroleva, E., et al., Surface morphological changes of aluminium alloys in alkaline solution:: effect of second phase material. Corrosion Science, 1999. 41(8): p. 1475-1495.
    22.Xue, W., et al., Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy. Journal of the American Ceramic Society, 1998. 81(5): p. 1365-1368.
    23.Zhang, D., et al., A composite anodizing coating containing superfine Al 2 O 3 particles on AZ31 magnesium alloy. Surface and Coatings Technology, 2013. 236: p. 52-57.
    24.Li, X. and B.L. Luan, Discovery of Al 2 O 3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Materials Letters, 2012. 86: p. 88-91.
    25.Lee, K.M., et al., Electrochemical response of ZrO 2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surface and Coatings Technology, 2011. 205(13): p. 3779-3784.
    26.Matykina, E., et al., Optimisation of the plasma electrolytic oxidation process efficiency on aluminium. Surface and Interface Analysis, 2010. 42(4): p. 221-226.
    27.Yu, L., J. Cao, and Y. Cheng, An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles. Surface and Coatings Technology, 2015. 276: p. 266-278.
    28.Wang, Y., et al., Effect of SiC particles on microarc oxidation process of magnesium matrix composites. Applied Surface Science, 2013. 283: p. 906-913.
    29.Lu, X., et al., Insights into plasma electrolytic oxidation treatment with particle addition. Corrosion Science, 2015. 101: p. 201-207.
    30.Liu, R., et al., Analyses of reinforcement phases during plasma electrolytic oxidation on magnesium matrix composites. Surface and Coatings Technology, 2015. 269: p. 212-219.
    31.Popa, A.M., et al., Influence of surfactant addition sequence on the suspension properties and electrophoretic deposition behaviour of alumina and zirconia. Journal of the european ceramic society, 2006. 26(6): p. 933-939.

    QR CODE