簡易檢索 / 詳目顯示

研究生: 施上元
Shang-yuan Shih
論文名稱: 利用非線性模型預估控制法發展駕駛人縱向與橫向控制模型
Modeling of Driver Longitudinal and Lateral Control using Nonlinear Model Predictive Control
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 黃安橋
An-chyau Huang
林紀穎
Chi-ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 駕駛人模型非線性模型預估控制法多重目標最佳化多重限制式
外文關鍵詞: driver model, nonlinear model predictive control, multiple objectives optimization, multiple constraints
相關次數: 點閱:349下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由非線性模型預估控制法NMPC (Nonlinear Model Predictive Control)建立一整合縱向橫向控制的駕駛人模型,並在模擬中以方向盤、油門、煞車量來操控商用模擬軟體CarSim®所提供之車輛動力學模型。在預估模型上,車輛動力學模型為包含縱向橫向變數之非線性模型,且車輛內部的各機構模型,如引擎模型、輪胎模型等亦屬於非線性之模型,而本駕駛人模型可以包含這些因素之考量。為描述駕駛人在操控車輛時所考量的各種因素,NMPC內部也包含多重目標函數與限制式。在駕駛風格描述上,本駕駛人可以藉由調整不同的權重與限制式設定,描述不同駕駛風格的過彎行為。此外為充分發揮NMPC架構可包含非線性預估模型與目標函數之特性,本研究以一特殊的目標函數描述駕駛人忽略細微橫向誤差的行為,並在高速急迫過彎模擬中探討包含不同精確度的輪胎模型對駕駛人模型操控能力之影響。


In this research, by using Nonlinear Model Predictive Control (NMPC), a driver model is proposed, which is capable of controlling CarSim® vehicle model by applying steering wheel angle, engine throttle, and brake in simulation. In order to maintain success in different simulations, the models of both vehicle and the parts inside, such as engine, tire, and bake system … etc., should be included in prediction model. For describing different considerations in driver’s thought, multiple objectives and constraints are included in NMPC. In result, by different arrangements in weightings and constraints, the NMPC driver model behaves differently in driving style. In further research, by using the ability of NMPC which can solve nonlinear optimization problems, we discussed driver’s tendency of ignoring small lateral error from center of lane and the nonlinear behavior in tire. In order to describe the tendency of ignoring small lateral error, we used a nonlinear objective function. Furthermore, during the simulation of high speed cornering, we also verified that the prediction model with different accuracy will affect the control capability of the driver model.

摘要 I ABSTRACT II 目錄 III 符號索引 V 圖目錄 VII 表目錄 IX 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.2.1 縱向控制駕駛人模型 3 1.2.2 橫向控制駕駛人模型 6 1.2.3 縱向與橫向控制駕駛人模型 10 1.3 文獻總結 12 1.4 工作項目 14 第2章 受控廠模型 15 2.1 CarSim®車輛模型 15 2.2 受控場資訊 15 2.2.1 車輛模型之狀態變數與控制項 15 2.2.2 車輛動力學模型 16 第3章 NMPC駕駛人模型 17 3.1 預估模型 17 3.1.1 縱向車輛動力學 18 3.1.2 橫向車輛動力學 21 3.2 模型離散化與預估 27 3.3 目標函數 28 3.3.1 車速規劃 28 3.3.2 循跡 28 3.3.3 穩定與舒適性 29 3.3.4 控制量成本 29 3.3.5 多重目標函數的整合 30 3.4 限制式 30 3.5 利用數值解處理非線性最佳化問題 31 3.6 NMPC駕駛人模型控制訊號與CarSim®車輛受控體之聯結 31 第4章 模擬結果與實驗數據分析 32 4.1 模擬情境 32 4.1.1 一般過彎情境道路 32 4.1.2 急迫彎道 33 4.2 一般駕駛人之過彎行為 34 4.2.1 實驗數據起點對齊 35 4.2.2 車速40公里模擬與實驗數據之比對結果 38 4.2.3 車速50公里模擬與實驗數據之比對結果 42 4.2.4 車速60公里模擬與實驗數據之比對結果 46 4.2.5 車速70公里模擬與實驗數據之比對結果 49 4.2.6 一般駕駛人模擬結論 52 4.3 極端的駕駛行為 54 4.3.1 過度保守駕駛 54 4.3.2 危險駕駛 58 4.4 駕駛人忽略細微誤差之行為 65 4.4.1 實驗數據中忽略小誤差之現象 65 4.4.2 外在干擾項 67 4.4.3 非線性目標函數 69 4.4.4 模擬分析 70 4.4.5 結論 78 4.5 車輛輪胎之非線性行為 79 4.5.1 NMPC內部模型種類 79 4.5.2 模擬結果 79 4.5.3 結論 84 第5章 結論與未來展望 85 5.1 結論 85 5.2 未來展望 86 參考文獻 87

[1] 中華民國101年道路交通安全年報
[2] Johannsen, G., “Fahrzeugführung,” Ingenieurpsychologie. Göttingen, FRG: Verlag für Psychologie, 1990.
[3] MacAdam, C. C., “An optimal preview control for linear system,” Transaction of ASME, pp. 188-190, 1980.
[4] 余序鵬,“利用適應性預估控制法發展駕駛人縱向與橫向控制模型,”台灣科技大學機械系碩士論文,2009。
[5] 陳俊戎,“適應性模型預估控制法之駕駛人模型實驗驗證,”台灣科技大學機械系碩士論文,2010。
[6] 姜智傑,“限制性模型預估控制法於轉向行為之駕駛人模型,”台灣科技大學機械系碩士論文,2011。
[7] Prokop, G., “Modeling human vehicle driving by model predictive online optimization,” Vehicle System Dynamics, vol. 35, no. 1, pp. 19-53, 2001.
[8] Ritchie, M.L., McCoy, W.K., and Welde, W.L., “A study of the relation between forward velocity and lateral acceleration in curves during normal driving,” Human Factors, vol. 10, no. 3, pp. 255-258, 1968.
[9] Herrin, G.D. and Neuhardt, J.B., “An empirical model for automobile driver horizontal curve negotiation,” Human Factors, vol. 16, no. 2, pp. 129-133, 1974.
[10] Reymond, G., Kemeny, A., Droulez, J., and Berthoz, A., “Role of lateral acceleration in curve driving: driver model and experiments on a real vehicle and a driving simulator,” Human Factors, vol. 43, no. 3, pp. 483-495, 2001.
[11] Yamakado ,M. and Abe ,M., “An experimentally confirmed driver longitudinal acceleration control model combined with vehicle lateral motion,” Vehicle System Dynamics, vol. 46, pp. 129 -149, 2009.
[12] Nobukawa, K., Gordon, T. J., and LeBlanc, D. J., “Anticipatory speed control model applied to intersection left turns,” Vehicle System Dynamics, vol. 50, no. 11, pp. 1653 -1672, 2012.
[13] Kondo, M. and Ajimine, A., “Driver’s sight point and dynamics of the driver-vehicle-system related to it,” Society of Automotive Engineers (SAE), 680104, 1968.
[14] McRuer, D.T. and Krendel, E.S.,” The human operator as a servo system element,” Journal of the Franklin Institute, vol. 267, no. 5, pp. 381-403, 1959.
[15] McRuer, D.T., Graham, D., Krendel, E.S. and Reisener, W., “Human pilot dynamics in compensatory systems: theory, models and experiments with controlled-element and forcing function variations,” Wright-Patterson Air Force Base (OH): Technical Report, AFFDL-TR-65-15, 1965.
[16] Weir, D.H. and McRuer, D.T., “Dynamics of driver vehicle steering control,” Automatica, vol. 6, no. 1, pp. 87-98, 1970.
[17] McRuer, D.T. and Krendel, E.S., “Mathematical models of human pilot behavior,” Hawthorne CA, Systems Technology, Inc., AGARD AG 188, STI-P-146, 1974.
[18] McRuer, D.T., Allen, R.W., Weir, D.H. and Klein, R.H., “New results in driver steering control models,” Human Factors, vol. 19, no. 4, pp. 381-397, 1977.
[19] MacAdam, C.C., “Application of an optimal preview control for simulation of closed-loop automobile driving,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11, no. 6, pp. 393-399, 1981.
[20] Sharp, R. S. and Peng, H., “Vehicle dynamics applications of optimal control theory,” Vehicle System Dynamics, vol. 49, no. 7, pp. 1073 -1111, 2011.
[21] Ungoren, A. Y. and Peng, H., “An adaptive lateral preview driver model,” Vehicle System Dynamics, vol. 43, no. 4, p245 -259, 2005.
[22] Pick, A. J. and Col, D. J., “A mathematical model of driver steering control including neuromuscular dynamics,” Journal of Dynamic Systems, Measurement, and Control, vol. 130, 2008.
[23] Kim, N. and Cole, D. J., “A model of driver steering control incorporating the driver’s sensing of steering torque,” Vehicle System Dynamics, vol. 49, no. 10, pp. 1575-1596, 2011.
[24] Cole, D. J., ”A path-following driver-vehicle model with neuromuscular dynamics, including measured and simulated responses to a step in steering angle overlay,” Vehicle System Dynamics, vol. 50, no. 4, pp. 573-596, 2012.
[25] Timings, J. P. and Cole, D. J., “Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line,” Vehicle System Dynamics, vol. 50, no. 6, pp. 883-901, 2012.
[26] Sharp, R. S., Casanova, D., and Symonds, P., “A mathematical model for driver steering control, with design, tuning and performance results,” Vehicle System Dynamics, vol. 33, pp. 289-326, 2000.
[27] Sharp, R.S. and Valtetsiotis, V., “Optimal preview car steering control,” Vehicle System Dynamics Supplement, vol. 35, p101-117, 2001.
[28] Grüne, L. and Pannek, J., “Nonlinear model predictive control: theory and algorithms,” Springer, 2011.
[29] Pacejka, H. B. and Besselink, I. J. M. ,“Magic formula tyre model with transient properties” Vehicle System Dynamics Supplement, vol. 27, pp. 234-249, 1997.

QR CODE