簡易檢索 / 詳目顯示

研究生: 林亞志
Ya-Zhi Lin
論文名稱: 不同負載下的永磁輔助同步磁阻馬達故障診斷架構
Fault Diagnosis Framework of Permanent Magnet-Assisted Synchronous Reluctance Motors under Different Loads
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 劉孟昆
藍振洋
郭俊良
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 71
中文關鍵詞: 故障診斷永磁輔助同步磁阻馬達深度學習架構一維卷積神經網路長短期記憶人工神經網路工業自動化
外文關鍵詞: Fault diagnosis, Permanent magnet assisted synchronous reluctance motor, Deep learning architecture, One-dimensional convolutional neural network, Long short-term memory, Artificial neural network, Industrial automation
相關次數: 點閱:834下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了保持工業設備的可靠性和效率,馬達故障診斷至關重要,這涉及製程的成本和安全運作。而在全球持續推動高效能馬達以節能減碳的趨勢,永磁輔助磁阻馬達具有效率高、扭矩密度高、成本效益的優勢,因此發展愈趨受到重視。現今,深度學習技術於馬達故障診斷領域展現出可自動提取特徵與優秀的分類性能,然而模型可能在面對與訓練資料分佈不同的新情境時表現不佳,其泛化能力仍然是一個挑戰,對於實際落地應用仍有侷限性。
為了解決這些問題,本研究鑑別馬達模型的電氣與機械參數,建立系統輸入與輸出的模型,並提取馬達的物理狀態,提出了一種創新的混合深度學習架構。其整合一維卷積神經網路、長短期記憶、人工神經網路三個獨立通道,可自動提取時域及頻率域的電訊號,以及物理特徵中空間特徵與故障類別的依賴關係。這個架構可辨別健康馬達、傳動齒輪損壞、傳動齒輪潤滑油缺失與繞組匝間短路四種狀態,該架構結合傳統模型驅動方法的優點和資料驅動方法的靈活性,不僅對與訓練資料相同負載下的資料診斷具有高準確性和可靠性,也能夠有效辨別與訓練階段不同負載的獨立測試資料,這展現了模型良好的泛化能力與競爭力。
研究的潛在應用包括在工業自動化和維護預測中,實現更高效和成本效益的故障診斷解決方案。此研究未來將有機會擴展到其他類型的電機系統。


To maintain the reliability and efficiency of industrial equipment, motor fault diagnosis is crucial as it involves process costs and safe operations. In the global trend of promoting high-performance motors to save energy and reduce carbon emissions, permanent magnet-assisted synchronous reluctance motors are gaining more attention due to their high efficiency, high torque density, and cost-effectiveness. Deep learning techniques show promising automatic feature extraction and excellent classification performance in motor fault diagnosis. However, models may perform poorly when faced with new situations different from the training data distribution, and their generalization ability remains a challenge, posing limitations for practical applications.
To address these issues, this study identifies parameters of motor models, establishes a model of system inputs and outputs, and extracts the physical states of the motor, proposing an innovative hybrid deep learning architecture. This architecture integrates three independent channels: one-dimensional convolutional neural networks, long short-term memory networks, and artificial neural networks. It can automatically extract electrical signals in the time and frequency domains, the spatial characteristics of physical features, and the dependencies of fault categories. This architecture can distinguish four states: healthy motor, damaged drive gear, lack of lubrication in drive gear, and inter-turn short circuit in windings. It combines the advantages of traditional model-driven methods with the flexibility of data-driven approaches, providing high accuracy and reliability in diagnosing data under the same load as the training data and effectively identifying independent test data with different loads, demonstrating good generalization ability and competitiveness.
The potential applications of this research are significant. It could lead to more efficient and cost-effective fault diagnosis solutions in industrial automation and predictive maintenance. Moreover, the findings of this study may have broader implications, extending to other types of motor systems, thereby contributing to the advancement of the field.

摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 縮寫對照表 ix 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 文獻回顧 2 1.3.1 訊號式電機診斷 2 1.3.2 參數估測 3 1.3.3 模型式電機診斷 5 1.3.4 人工智慧診斷 5 1.4 研究貢獻 8 1.5 論文架構概述 8 第二章 研究方法 9 2.1 永磁輔助同步磁阻馬達 9 2.1.1 座標軸轉換 9 2.1.2 馬達數學模型 11 2.1.3 模型離散化 13 2.2 系統鑑別 14 2.2.1 最小平方法 14 2.2.2 遞迴最小平方法 15 2.2.3 帶遺忘因子遞迴最小平方法 17 2.2.4 參數識別模型 18 2.3 快速傅立葉轉換 20 2.4 馬達傳動異常電流特徵 21 2.5 特徵預處理 22 2.5.1 正規化 22 2.5.2 標準化 22 2.6 深度學習 22 2.6.1 人工神經網路 22 2.6.2 卷積神經網路 23 2.6.3 遞迴神經網路 24 2.6.4 長短期記憶模型 24 2.6.5 隨機搜尋法 25 第三章 實驗規劃與分析流程 26 3.1 實驗平台與儀器 26 3.2 實驗流程 30 3.2.1 故障診斷分析流程 30 3.2.2 資料前處理 30 3.2.3 帶遺忘因子遞迴最小平方法估測參數 31 3.2.4 深度學習模型分類 34 第四章 實驗結果與分析 38 4.1 電壓電流模型參數分析 38 4.1.1 健康與損壞情況參數估測比較 38 4.1.2 不同負載下參數估測結果 40 4.2 電壓電流模型式殘差分析 43 4.2.1 殘差頻譜分析 43 4.3 深度學習分類結果 49 4.3.1 訓練與驗證階段 49 4.3.2 模型比較 49 第五章 結論 60 5.1 結果討論 60 5.2 未來展望 61 參考文獻 62 附錄 67

[1] IEA. "Net Zero by 2050." IEA, Paris. https://www.iea.org/reports/net-zero-by-2050, Licence: CC BY 4.0.
[2] M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE transactions on industrial electronics, vol. 47, no. 5, pp. 984-993, 2000.
[3] S. Jokic, N. Cincar, and B. Novakovic, "The analysis of vibration measurement and current signature in motor drive faults detection," in 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1-6, 2018.
[4] F. L. T. Guefack, A. Kiselev, and A. Kuznietsov, "Improved detection of inter-turn short circuit faults in PMSM drives using principal component analysis," in 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 154-159, 2018.
[5] G. A. Capolino, J. A. Antonino-Daviu, and M. Riera-Guasp, "Modern diagnostics techniques for electrical machines, power electronics, and drives," IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1738-1745, 2015.
[6] J. Rosero, L. Romeral, J. Cusido, A. Garcia, and J. Ortega, "On the short-circuiting fault detection in a PMSM by means of stator current transformations," in 2007 IEEE Power Electronics Specialists Conference, pp. 1936-1941, 2007.
[7] E. G. Strangas, S. Aviyente, J. D. Neely, and S. S. H. Zaidi, "The effect of failure prognosis and mitigation on the reliability of permanent-magnet AC motor drives," IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3519-3528, 2012.
[8] M. Khan, T. Radwan, and M. Rahman, "Diagnosis and protection of IPM motors using wavelet packet transform," in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 4, pp. 1970-1977, 2006.
[9] S. S. Moosavi, A. Djerdir, Y. A. Amirat, and D. A. Khaburi, "Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art," Journal of magnetism and magnetic materials, vol. 391, pp. 203-212, 2015.
[10] M. Zafarani, E. Bostanci, Y. Qi, T. Goktas, and B. Akin, "Interturn short-circuit faults in permanent magnet synchronous machines: An extended review and comprehensive analysis," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 2173-2191, 2018.
[11] N. Bedetti, S. Calligaro, and R. Petrella, "Stand-still self-identification of flux characteristics for synchronous reluctance machines using novel saturation approximating function and multiple linear regression," IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3083-3092, 2016.
[12] A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, "Axial flux interior PM synchronous motor: parameters identification and steady-state performance measurements," in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370), vol. 4, pp. 2552-2559, 1999.
[13] A. V. Oppenheim, Discrete-time signal processing. Pearson Education India, 1999.
[14] J. Schoukens, R. Pintelon, E. Van Der Ouderaa, and J. Renneboog, "Survey of excitation signals for FFT based signal analyzers," IEEE Transactions on Instrumentation and Measurement, vol. 37, no. 3, pp. 342-352, 1988.
[15] S. A. Odhano, R. Bojoi, Ş. G. Roşu, and A. Tenconi, "Identification of the magnetic model of permanent-magnet synchronous machines using DC-biased low-frequency AC signal injection," IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3208-3215, 2015.
[16] M. Burth, G. C. Verghese, and M. Velez-Reyes, "Subset selection for improved parameter estimation in on-line identification of a synchronous generator," IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 218-225, 1999.
[17] F. Mwasilu and J.-W. Jung, "Enhanced fault-tolerant control of interior PMSMs based on an adaptive EKF for EV traction applications," IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5746-5758, 2015.
[18] H. W. Kim, M. J. Youn, K. Y. Cho, and H.-S. Kim, "Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty," IEEE Transactions on Control Systems Technology, vol. 14, no. 4, pp. 589-601, 2006.
[19] K. H. Kim, "DSP-based sequential parameter estimation of PWM inverter-fed IPM synchronous machine for auto-tuning applications," International Journal of Control and Automation, vol. 6, no. 2, pp. 195-204, 2013.
[20] M. A. Hamida, J. De Leon, A. Glumineau, and R. Boisliveau, "An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification," IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 739-748, 2012.
[21] F. Caccavale, F. Pierri, and L. Villani, "Adaptive observer for fault diagnosis in nonlinear discrete-time systems," 2008.
[22] S. Ye and X. Yao, "An enhanced SMO-based permanent-magnet synchronous machine sensorless drive scheme with current measurement error compensation," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4407-4419, 2020.
[23] S. Gao, H. Dong, B. Ning, T. Tang, and Y. Li, "Nonlinear mapping‐based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification," IET Control Theory & Applications, vol. 12, no. 6, pp. 819-827, 2018.
[24] A. Avdeev and O. Osipov, "PMSM identification using genetic algorithm," in 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), pp. 1-4, 2019.
[25] W. Gong, Z. Liao, X. Mi, L. Wang, and Y. Guo, "Nonlinear equations solving with intelligent optimization algorithms: A survey," Complex System Modeling and Simulation, vol. 1, no. 1, pp. 15-32, 2021.
[26] R. Isermann, "Model-based fault-detection and diagnosis–status and applications," Annual Reviews in control, vol. 29, no. 1, pp. 71-85, 2005.
[27] R. K. Mehra and J. Peschon, "An innovations approach to fault detection and diagnosis in dynamic systems," Automatica, vol. 7, no. 5, pp. 637-640, 1971.
[28] S. Bøgh, "Multiple hypothesis-testing approach to FDI for the industrial actuator benchmark," Control Engineering Practice, vol. 3, no. 12, pp. 1763-1768, 1995.
[29] W. E. Sayed, M. A. E. Geliel, and A. Lotfy, "Fault diagnosis of PMSG stator inter-turn fault using extended Kalman filter and unscented Kalman filter," Energies, vol. 13, no. 11, p. 2972, 2020.
[30] M. A. Mazzoletti, G. R. Bossio, C. H. De Angelo, and D. R. Espinoza-Trejo, "A model-based strategy for interturn short-circuit fault diagnosis in PMSM," IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7218-7228, 2017.
[31] A. Sarikhani and O. A. Mohammed, "Inter-turn fault detection in PM synchronous machines by physics-based back electromotive force estimation," IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3472-3484, 2012.
[32] B. Vaseghi, N. Takorabet, and F. Meibody-Tabar, "Fault analysis and parameter identification of permanent-magnet motors by the finite-element method," IEEE Transactions on Magnetics, vol. 45, no. 9, pp. 3290-3295, 2009.
[33] M. Fitouri, Y. BenSalem, and M. N. Abdelkrim, "Analysis and co-simulation of permanent magnet sychronous motor with short-circuit fault by finite element method," in 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 472-477, 2016.
[34] Y. Li and Y. Liang, "A comparative study on inter-tern short circuit fault of PMSM using finite element analysis and experiment," in 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 290-294, 2015.
[35] M. S. Khan, U. V. Okonkwo, A. Usman, and B. S. Rajpurohit, "Finite element modeling of demagnetization fault in permanent magnet direct current motors," in 2018 IEEE power & energy society general meeting (PESGM), pp. 1-5, 2018.
[36] M. R. Minaz and E. Akcan, "An effective method for detection of demagnetization fault in axial flux coreless PMSG with texture-based analysis," IEEE Access, vol. 9, pp. 17438-17449, 2021.
[37] P. Gangsar and R. Tiwari, "Multifault diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine," Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 8, pp. 081014, 2018.
[38] R. Z. Haddad and E. G. Strangas, "On the accuracy of fault detection and separation in permanent magnet synchronous machines using MCSA/MVSA and LDA," IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 924-934, 2016.
[39] R. N. Toma, A. E. Prosvirin, and J.-M. Kim, "Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers," Sensors, vol. 20, no. 7, pp. 1884, 2020.
[40] B. Bessam, A. Menacer, M. Boumehraz, and H. Cherif, "Detection of broken rotor bar faults in induction motor at low load using neural network," ISA transactions, vol. 64, pp. 241-246, 2016.
[41] J. E. Garcia-Bracamonte, J. M. Ramirez-Cortes, J. de Jesus Rangel-Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto, and V. Alarcon-Aquino, "An approach on MCSA-based fault detection using independent component analysis and neural networks," IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1353-1361, 2019.
[42] I. H. Kao, W. J. Wang, Y. H. Lai, and J. W. Perng, "Analysis of permanent magnet synchronous motor fault diagnosis based on learning," IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 2, pp. 310-324, 2018.
[43] S. Shao, R. Yan, Y. Lu, P. Wang, and R. X. Gao, "DCNN-based multi-signal induction motor fault diagnosis," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 2658-2669, 2019.
[44] Q. Zhu, "Real-time quality inspection of motor rotor using cost-effective intelligent edge system," IEEE Internet of Things Journal, vol. 10, no. 8, pp. 7393-7404, 2022.
[45] N. Qu, Z. Li, J. Zuo, and J. Chen, "Fault detection on insulated overhead conductors based on DWT-LSTM and partial discharge," IEEE Access, vol. 8, pp. 87060-87070, 2020.
[46] J. Siswantoro, A. S. Prabuwono, A. Abdullah, and B. Idrus, "A linear model based on Kalman filter for improving neural network classification performance," Expert Systems with Applications, vol. 49, pp. 112-122, 2016.
[47] V. N. Ghate and S. V. Dudul, "Cascade neural-network-based fault classifier for three-phase induction motor," IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1555-1563, 2010.
[48] Y. Cheng, R. Wang, and M. Xu, "A combined model-based and intelligent method for small fault detection and isolation of actuators," IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2403-2413, 2015.
[49] S. E. Pandarakone, Y. Mizuno, and H. Nakamura, "Distinct fault analysis of induction motor bearing using frequency spectrum determination and support vector machine," IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 3049-3056, 2016.
[50] L. Xia, Y. Liang, P. Zheng, and X. Huang, "Residual-hypergraph convolution network: A model-based and data-driven integrated approach for fault diagnosis in complex equipment," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-11, 2022.
[51] Y. Wilhelm, P. Reimann, W. Gauchel, and B. Mitschang, "Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models," Procedia Cirp, vol. 99, pp. 278-283, 2021.
[52] R. H. Park, "Two-reaction theory of synchronous machines generalized method of analysis-part I," Transactions of the American Institute of Electrical Engineers, vol. 48, no. 3, pp. 716-727, 1929.
[53] S. Morimoto, M. Sanada, and Y. Takeda, "Performance of PM-assisted synchronous reluctance motor for high-efficiency and wide constant-power operation," IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1234-1240, 2001.
[54] E. O. Brigham, The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.
[55] S. Rajagopalan, T. G. Habetler, R. G. Harley, T. Sebastian, and B. Lequesne, "Current/voltage-based detection of faults in gears coupled to electric motors," IEEE Transactions on industry applications, vol. 42, no. 6, pp. 1412-1420, 2006.
[56] M. Skowron, T. Orlowska-Kowalska, and C. T. Kowalski, "Detection of permanent magnet damage of PMSM drive based on direct analysis of the stator phase currents using convolutional neural network," IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 13665-13675, 2022.
[57] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
[58] K. O'shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
[59] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.
[60] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[61] J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," Journal of machine learning research, vol. 13, no. 2, 2012.
[62] S. Narayan, R. R. Kumar, G. Cirrincione, and M. Cirrincione, "Detection of Stator Fault in Synchronous Reluctance Machines Using Shallow Neural Networks," in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1347-1352, 2021.
[63] Q. Song, M. Wang, W. Lai, and S. Zhao, "On Bayesian optimization-based residual CNN for estimation of inter-turn short circuit fault in PMSM," IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 2456-2468, 2022.
[64] A. C. Babu, S. R. K. Merugu, and J. Seshadrinath, "Deep learning based Incipient Stator Inter-turn Fault Diagnosis for Synchronous Reluctance Motor Drives," in 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG), pp. 1-6, 2023.

無法下載圖示 全文公開日期 2034/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2122/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE