簡易檢索 / 詳目顯示

研究生: 黃士榮
Shih-Jung Huang
論文名稱: 高壓直流式資料中心電源系統之產品研發策略 - 以M公司為個案研究
Product Development Strategy for High Voltage Direct Current (HVDC) Power System of Data Center - A Case Study of M Company
指導教授: 林柏廷
Po-Ting Lin
王毓實
Yu-Shi Wang
口試委員: 姜嘉瑞
Chia-Jui Chiang
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 高壓直流資料中心電源供應器產品開發策略
外文關鍵詞: HVDC, Data center, Power supply, Product-development strategy
相關次數: 點閱:285下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著雲端計算和大數據時代的到來,資料中心機房的建設在全球各地持續增長,但相對的也產生了大量的機房能耗,故資料中心的建置在電力轉換效率提高方面越趨重要。高壓直流(High Voltage Direct Current, HVDC)式電源系統在資料中心的應用上,相較於傳統AC交流轉48Vdc直流架構擁有較高的電力轉換效率,得以降低系統功耗。本研究係以高壓直流式資料中心系統所需之電源供應器產品規格為探討重點。
首先,依所蒐集之全球市場資料加以彙整後,得以推估資料中心電源產業呈穩定成長且功率大幅增長之趨勢。其次,解析高壓直流式電源系統的商用規格、法規、專利等面向,作為產品開發規劃依據,並依此分析方式提出一套『產業分析』方法。論文中也藉由五力分析瞭解電源供應器產業結構及競爭力,再利用SWOT分析作研究個案公司與市場主要競爭對手的經營模式差異,並依此分析方式提出一套『商業分析』方法。最後,論文提出一套『產品開發策略』,依照個案企業的產品經銷特性、研發技術力與預期未來市場趨勢等觀點,提出適於個案企業之產品開發藍圖。藍圖規劃包含近程(1年)、中程(2~3年)、中長程(3~4年)及遠程(4~6年)等四階段之產品開發策略,使個案企業得以採循序漸進的方式,逐步投入研發人力、進行設備添購,有計畫性的作產品開發及認證申請。
藉由論文研究所擬議的產品開發策略,除了應用於個案公司外,亦可套用於業界上類似企業,以有效擴大其在數據中心電力解決方案領域的市場份額。


With the advent of cloud computing and the era of big data, the construction of data center computer facilities has continued to grow throughout the world, and running those new computer facilities also results in relatively huge power consumption. Therefore, improving efficiency of power conversion becomes more and more important to newly-built data centers. In terms of power conversion, high-voltage direct current (HVDC) power systems have much higher efficiency than the traditional architecture of converting alternating current (AC) to low-voltage direct current (DC) (AC to 48Vdc) in data center applications. HVDC power systems can effectively reduce power consumption of the data center. This thesis focuses on the development of power supply products with the specifications of HVDC required by power systems for data center.
First, basing on the collected global market data and further analysis, it is possible to estimate the trend that power industry for data center is growing steadily and output power is increasing as well. Second, by analyzing the facets of HVDC power supply systems with respect to its commercial specifications, regulations, patents, and so forth to serve as the basis in product planning and product development. According to aforementioned methodology, an approach of industry analysis is presented. This thesis also analyzes the structure and competitiveness of power supply industry through Porter’s five-force analysis, and then uses SWOT analysis to study differences between the business models of the case company and its main competitors in the market. By Integrating both Porter’s five-force and SWOT analysis, this thesis presents another approach of business analysis. In the end, this thesis proposes a set of product development strategies that base on the attributes of product distribution, technical strength in research and development and projected future market trends to create suitable product development blueprint for the case enterprise. The development blueprint includes four-stage product development strategies that enables the case company to adopt the approach with step-by-step progress for short-term (1 year), medium-term (2~3 years), medium-long term (3~4 years) and long-term (4~6 years) periods. It will gradually invest in research and development manpower, purchase more equipment, and completes product development and product certification as per its planning.
The estimated results showed that the proposed blueprint of research, design and business strategies could be applied to the case company or other similar corporates in the world to effectively enlarge their market share in the segment of power solutions for data center.

目錄 摘 要 I Abstract II 誌 謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 2 1.2 個案公司介紹 4 1.2.1 個案公司與營運概述 5 1.2.2 個案公司產品與運用領域 6 1.3 研究目的 7 1.4 研究限制 8 1.5 論文架構 8 第二章 產業分析與文獻探討 10 2.1 電源產業市場現況分析 10 2.2 通訊與資料中心電源市場分析 13 2.2.1 市場規模與成長 13 2.2.2 現行通訊伺服系統架構 16 2.3 高壓直流式數據中心電源趨勢 19 2.3.1 高壓直流式數據中心電源法規分析 23 2.3.2 高壓直流式數據中心電源專利分析 27 2.4 電源供應器先進技術分類與解析 30 2.4.1 新一代半導體物料GaN、SiC 30 2.4.2 高效率與高密度工業電源供應器設計架構 33 2.5 小結 38 第三章 商業分析 40 3.1 工業電源產業競爭力分析 40 3.2 M公司現有產品特性分析 42 3.3 M公司與競爭對手分析 44 3.2.1 產品開發方式對比 46 3.2.2 經銷方式對比 47 3.2.3 SWOT分析 51 3.4 小結 54 第四章 產品開發策略與藍圖 56 4.1 HVDC電源系統 57 4.1.1 AC-DC功因校正器 61 4.1.2 DC-DC電壓轉換器 62 4.2 M公司產品規格與HVDC式電源需求比較 64 4.3 產品開發佈局藍圖 64 4.3.1 近程產品藍圖( 1年) 66 4.3.2 中程產品藍圖( 2~3年) 67 4.3.3 中長程產品藍圖( 3~4年) 68 4.3.4 遠程產品藍圖( 4~6年) 69 4.4 新產品開發財務規劃與預估 70 4.5 小結 77 第五章 結論 79 參考文獻 81 簡歷 85

[1] L. J. Klein, S. Bermudez, H. Wehle, S. Barabasi, and H. F. Hamann, "Sustainable data centers powered by renewable energy," in 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012, pp. 362-367.
[2] M. Rossi and D. Brunelli, "Forecasting data centers power consumption with the Holt-Winters method," in 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, 2015, pp. 210-214.
[3] G. Í, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, "Designing and Managing Data centers Powered by Renewable Energy," IEEE Micro, vol. 34, no. 3, pp. 8-16, 2014.
[4] Micro-tech Consultant.; Power Electronics Industry News.; -Vol. 265, March 2018
[5] A. Bindra, "Growth in Merchant Power Supplies: A Look at the Market Trends Propelled by Emerging Applications," IEEE Power Electronics Magazine, vol. 1, no. 1, pp. 32-34, 2014.
[6] iHS Ececutive summary .; ac-dc-dc-dc merchant power supplies report-V2.; 2016
[7] P. Gueguen, "How power electronics will reshape to meet the 21<sup>st</sup>century challenges?," in 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2015, pp. 17-20.
[8] http://www.yole.fr/2014-galery-PE.aspx#I0003887b.html (accessed 12/15/2018), part of YOLE Development. http://www.yole.fr/ (accessed 12/15/2018).
[9] T. Tanaka et al., "Concept of new power supply system topology using 380 V and 48 V DC bus for future datacenters and telecommunication buildings," in 2015 IEEE International Telecommunications Energy Conference (INTELEC), 2015, pp. 1-6.
[10] T. Babasaki, T. Tanaka, Y. Nozaki, T. Tanaka, T. Aoki, and F. Kurokawa, "Developing of higher voltage direct-current power-feeding prototype system," in INTELEC 2009 - 31st International Telecommunications Energy Conference, 2009, pp. 1-5.
[11] F. Bodi and E. H. Lim, "Criteria for emerging telecom and data center powering architectures," in Intelec 2012, 2012, pp. 1-9.
[12] K. Usui, T. Babasaki, K. Hirose, and Y. Yoshida, "Dual-voltage output power supply system toward parallel use of 380Vdc and 48Vdc," in 2016 IEEE International Telecommunications Energy Conference (INTELEC), 2016, pp. 1-5.
[13] H. Yamamura, K. Umezawa, and S. Takahashi, "Higher-Voltage Direct Current voltage study, ICT equipment perspective," in Intelec 2010, 2010, pp. 1-8.
[14] Dennis P. Symanski. Why Not Operate Data Centers & Telecom Central Offices at 400 VDC?; Technical Report for 2009 IBM Power and Cooling Technology Symposium: Rochester, MN, October 2009.
[15] NTT DATA INTELLILIN. Latest trends of High Voltage Direct Current (HVDC) system; Technical Report for Green Solution Business Unit Environmental Technology Division: November 2016.
[16] M. Noritake, T. Ushirokawa, K. Hirose, and M. Mino, "Verification of 380 Vdc distribution system availability based on demonstration tests," in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, pp. 1-6.
[17] Stephen Oliver. High Voltage (HVDC) Distribution & Conversion in Datacenters, Aerospace, Microgrids & Transportation; Technical Report for Vicor - PSMA Power Technology Roadmap: July 2014.
[18] Isik C. Kizilyalli; Eric P. Carlson,; etc. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency; Technical Report for United States Department of Energy: Washington, DC, March 2018.
[19] Y. Jiao and M. M. Jovanovic, "Comparative evaluation of static and dynamic performance of 1.2-kV SiC power switches," in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 2704-2711.
[20] A. R. Alonso, M. F. Díaz, D. G. Lamar, M. A. P. d. Azpeitia, M. M. Hernando, and J. Sebastián, "Switching Performance Comparison of the SiC JFET and SiC JFET/Si MOSFET Cascode Configuration," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2428-2440, 2014.
[21] R. Burgos, Z. Chen, D. Boroyevich, and F. Wang, "Design considerations of a fast 0-Ω gate-drive circuit for 1.2 kV SiC JFET devices in phase-leg configuration," in 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 2293-2300.
[22] R. Pittini, Z. Zhang, and M. A. E. Andersen, "Switching performance evaluation of commercial SiC power devices (SiC JFET and SiC MOSFET) in relation to the gate driver complexity," in 2013 IEEE ECCE Asia Downunder, 2013, pp. 233-239.
[23] A. Lemmon, R. Graves, and J. Gafford, "Evaluation of 1.2 kV, 100A SiC modules for high-frequency, high-temperature applications," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 789-793.
[24] H. Sheng, Z. Chen, F. Wang, and A. Millner, "Investigation of 1.2 kV SiC MOSFET for high frequency high power applications," in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 1572-1577.
[25] Z. Chen, D. Boroyevich, R. Burgos, and F. Wang, "Characterization and modeling of 1.2 kv, 20 A SiC MOSFETs," in 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 1480-1487.
[26] C. DiMarino, Z. Chen, M. Danilovic, D. Boroyevich, R. Burgos, and P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs," in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 3235-3242.
[27] A. Lemmon, M. Mazzola, J. Gafford, and K. M. Speer, "Comparative analysis of commercially available silicon carbide transistors," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 2509-2515.
[28] Z. Zhang et al., "Methodology for switching characterization evaluation of wide band-gap devices in a phase-leg configuration," in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014, pp. 2534-2541.
[29] T. Daranagama, N. Udugampola, R. McMahon, and F. Udrea, "Comparative analysis of static and switching performance of 1.2 kV commercial SiC transistors for high power density applications," in The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, 2013, pp. 48-51.
[30] J. S. Glaser et al., "Direct comparison of silicon and silicon carbide power transistors in high-frequency hard-switched applications," in 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 1049-1056.
[31] L. D. Stevanovic, K. S. Matocha, P. A. Losee, J. S. Glaser, J. J. Nasadoski, and S. D. Arthur, "Recent advances in silicon carbide MOSFET power devices," in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 401-407.
[32] Elena Barbarini. Si, SiC or GaN : technology and cost comparison.; Technical Report for senior cost analyst: July 2015.
[33] U. Schwalbe, M. Scherf, T. Reimann, and G. Deboy, "Advantages of 3-stage-DC/DC-converters for Server Switch Mode Power Supply (SMPS) applications," in 2007 European Conference on Power Electronics and Applications, 2007, pp. 1-10.
[34] U. Schwalbe, M. Scherf, T. Reimann, and G. Deboy, "Comparison of different three-stage DC-DC converter solutions for SMPS applications," in 2008 IEEE International Symposium on Industrial Electronics, 2008, pp. 178-183.
[35] F. Kurokawa et al., "A new quick response digital control switching power supply unit for HVDC system," in Intelec 2012, 2012, pp. 1-5.
[36] F. Kurokawa et al., "Transient response of novel P-I-D digital control switching power supply for HVDC system," in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, pp. 1-6.
[37] Keiichi Hirose. DC powered data centers in the word.; Technical Report for NTT Facilities.: Tokyo Japan, September 2011.
[38] Neil Rasmussen and James Spitaels. A Quantitative Comparison of High Efficiency AC vs, DC Power Distribution for Data Centers.; Technical Report for Schneider Electric – Data Center Science Center: 2012.

QR CODE