簡易檢索 / 詳目顯示

研究生: 廖紘毅
Hong-Yi Liao
論文名稱: 銅膜晶圓化學機械拋光之終點偵測研究
Endpoint Detection of Copper Wafer Chemical Mechanical Polishing
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊宏智
Hong-Tsu Young
陳順同
Shun-Tong Chen
鄭逸琳
Yih-Lin Cheng
張以全
Peter I-Tsyuen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 180
中文關鍵詞: 化學機械拋光終點偵測卷積神經網路
外文關鍵詞: Chemical Mechanical Polishing, Endpoint Detection, Convolutional Neural Network
相關次數: 點閱:231下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

半導體製造規格不斷的縮小、以及堆疊層數增加的情況下,使得化學機械拋光製程(Chemical Mechanical Polishing, CMP)對臨界尺寸控制需更加要求,因此在製程終點控制面臨重大挑戰。本研究針對拋光終點偵測(Endpoint detection, EPD)建立卷積神經網路(Convolutional neural network, CNN)線上終點辨別以及離線拋光訊號預測。於銅膜晶圓(Copper blanket wafer)拋光,量測拋光馬達扭矩、聲音訊號、震動訊號,進行訊號分析,發現馬達扭矩訊號可辨別銅膜移除至阻障層(Barrier layer)露出時的訊號差異,再以馬達扭矩訊號進一步建立線上Labview拋光量測系統,將收集到的拋光扭矩,訓練卷積神經網路模型。實驗進行40×40 mm2銅膜晶圓拋光線上終點偵測以及離線拋光訊號預測,於40×40 mm2銅膜晶圓拋光結果,卷積神經網路的終點辨識,較材料移除率(MRR)的終點準確,拋光頭及拋光盤離線訊號預測的均方誤差平均可達4.97×10^-7、9.61×10^-8。最後進行8吋銅膜晶圓拋光,結果在拋光頭及拋光盤離線訊號預測的均方誤差平均分別可達8.97×10^-6、2.24×10^-7。本研究之CNN方法可有效預測CMP成訊號。


The shrinkage of IC chips and increasing of stacked layers in semiconductor manufacturing make more demanding for the precision of the critical dimension. The chemical mechanical polishing (CMP) process faces a challenge in precise endpoint detection (EPD). This research focuses on convolutional neural network (CNN) of CMP EPD system. The offline signal analysis is performed by motor torque, acoustic emission (AE), and vibration signal during CMP process. Result shows that the motor torque signal of CMP can identify the difference in signal as the copper blanket is removed and the barrier layer exposed. Then, the CNN models are trained with torque signal and CNN EPD system is established by Labview. For CMP of 40×40 mm2 copper blanket wafers and 8-inch copper blanket wafers, online CNN EPD system and offline CNN signal prediction are implemented. Results of CMP of 40×40 mm2 copper blanket wafers show that the CNN EPD are more accurate than the endpoint of material removal rate (MRR). Results of offline signal prediction of polishing head and plate show a well-fitting with mean square error of an average of 4.97×10^-7 and 9.61×10^-8 from CNN. Finally, the results of 8-inch copper blanket wafer CMP signal prediction show mean square error of an average of 8.97×10^-6 and 2.24×10^-7 respectively. The CNN can be verified effectively to predict the CMP process signal.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 終點偵測(EPD) 7 2.1.1 機械訊號偵測 8 2.1.2 光或電訊號偵測 15 2.1.3 化學訊號偵測 18 2.2 卷積神經網路(CNN) 20 2.3 終點偵測相關專利 25 2.3.1 機械訊號偵測專利整理 25 2.3.2 光或電訊號偵測專利整理 30 2.3.3 化學訊號偵測專利整理 34 第三章 拋光訊號分析 35 3.1 拋光多種物理量量測 35 3.1.1 分析工具 38 3.1.2 結果分析:馬達扭矩 39 3.1.3 結果分析:聲音訊號 42 3.1.4 結果分析:震動訊號 46 3.2 卷積神經網路 49 3.2.1 基本概念 49 3.2.2 運行架構 51 3.2.3 模型訓練 55 3.2.4 模型建立流程 61 3.2.5 卷積神經網路模型 65 第四章 實驗設備及規劃 68 4.1 EPD 實驗器材 68 4.1.1 扭矩量測系統 69 4.1.2 聲發射感測器及加速規 72 4.2 EPD 程式系統 74 4.3 實驗耗材 77 4.3.1 測試晶圓 77 4.3.2 拋光液 78 4.3.3 拋光墊 79 4.4 量測儀器 80 4.5 實驗規劃 82 第五章 實驗結果與討論 85 5.1 實驗A:銅膜晶圓拋光終點偵測模型訓練 85 5.1.1 40×40 mm2銅膜晶圓過拋測試 85 5.1.2 40×40 mm2銅膜晶圓拋光 92 5.1.3 實驗分析:訊號處理結果 93 5.1.4 實驗分析:卷積神經網路訓練(終點辨別) 100 5.1.5 實驗分析:卷積神經網路訓練(訊號預測) 105 5.2 實驗B:小試片銅膜晶圓拋光終點偵測 111 5.2.1 40×40 mm2銅膜晶圓拋光線上終點偵測 111 5.2.2 40×40 mm2銅膜晶圓拋光訊號離線預測 117 5.3 實驗C:8吋銅膜晶圓拋光終點偵測 119 5.4 綜合結果與討論 124 第六章 結論與建議 127 6.1 結論 127 6.2 建議 128 參考文獻 129 附錄 135 附錄A:EPD系統(Labview 方塊圖) 135 附錄B:40×40 mm2銅膜晶圓過拋粗糙度 136 附錄C:40×40 mm2銅膜晶圓拋光訊號處理圖 144 附錄D:卷積神經網路參數表 160

[1] M. Roser and H. Ritchie, "Technological Progress," Our World in Data, 2020.
[2] H. Huang et al., "New cmp processes development and challenges for 7nm and beyond," China Semiconductor Technology International Conference (CSTIC), pp. 1-5, 2018.
[3] M. Krishnan and M. F. Lofaro, "Copper chemical mechanical planarization (Cu CMP) challenges in 22nm back-end-of-line (BEOL) and beyond," Advances in Chemical Mechanical Planarization (CMP), pp. 27-46, 2016.
[4] A. B. Kahng and K. Samadi, "CMP Fill Synthesis: A Survey of Recent Studies," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp. 3-19, 2008.
[5] M. Tsujimura, "Chemical mechanical polishing (CMP) removal rate uniformity and role of carrier parameters," Advances in Chemical Mechanical Planarization (CMP), pp. 417-432, 2016.
[6] T. K. Das, R. Ganesan, A. K. Sikder, and A. Kumar, "Online End Point Detection in CMP Using SPRT of Wavelet Decomposed Sensor Data," IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 3, pp. 440-447, 2005.
[7] T. Kojima, M. Miyajima, F. Akaboshi, T. Yogo, S. Ishimoto, and A. Okuda, "Application of CMP process monitor to Cu polishing," IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 3, pp. 293-299, 2000.
[8] H. Jeong, H. Kim, S. Lee, and D. Dornfeld, "Multi-Sensor Monitoring System in Chemical Mechanical Planarization (CMP) for Correlations with Process Issues," CIRP Annals, vol. 55, no. 1, pp. 325-328, 2006.
[9] H. Hocheng and Y.-L. Huang, "In Situ Endpoint Detection by Acoustic Emissions in Chemical–Mechanical Polishing of Metal Overlay," IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 306-312, 2007.
[10] 蔡岳勳, "電致動力應用於銅化學機械拋光平坦化效應研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
[11] H. K. Li, X. C. Lu, and J. B. Luo, "Motor Power Signal Analysis for End-Point Detection of Chemical Mechanical Planarization," (in English), Micromachines, vol. 8, no. 6, Jun 2017.
[12] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
[13] Z. Qu et al., "Cu Layer thickness monitoring in CMP process by using eddy current sensor," Patent null, 2012.
[14] S. Bourzgui, A. Roussy, G. Georges, E. Faivre, K. Labory, and A. Allard, "Device pattern impact on optical endpoint detection by interferometry for STI CMP," ICPT, pp. 1-6, 2017.
[15] T. Fujita and K. Kitade, "Development of endpoint detection using optical transmittance and magnetic permeability based on skin effect in chemical mechanical planarization," Precision Engineering, vol. 57, pp. 95-103, 2019.
[16] D. Zeidler, M. Plötner, and K. Drescher, "Endpoint detection method for CMP of copper," Microelectronic Engineering, vol. 50, no. 1, pp. 411-416, 2000.
[17] Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series," The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.
[18] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, "Deep convolutional neural networks on multichannel time series for human activity recognition," in Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[19] T. Kim, J. Lee, and J. Nam, "Sample-level CNN architectures for music auto-tagging using raw waveforms," 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 366-370, 2018.
[20] R. Mukhopadhyay, P. S. Panigrahy, G. Misra, and P. Chattopadhyay, "Quasi 1D CNN-based Fault Diagnosis of Induction Motor Drives," International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1-5, 2018.
[21] L. Eren, T. Ince, and S. Kiranyaz, "A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier," Journal of Signal Processing Systems, vol. 91, no. 2, pp. 179-189, 2019.
[22] W. J. Cote, J. E. Cronin, W. R. Hill, and C. A. Hoffman, "Endpoint detection apparatus and method for chemical/mechanical polishing," U.S. Patent 5 308 438, 1994.
[23] N. Kimura, F. Sakata, and T. Takahashi, "Polishing endpoint detection method," U.S. Patent 5 639 388, 1997.
[24] H. C. Chen and S. L. Hsu, "Chemical/mechanical planarization (CMP) endpoint method using measurement of polishing pad temperature," U.S. Patent 5 597 442, 1997.
[25] F. Zhang, "Chemical/mechanical polishing endpoint detection device and method," U.S. Patent 6 547 637, 2003.
[26] A. Bello and M. Wedlake, "Methods and systems for chemical mechanical planarization endpoint detection using an alternating current reference signal," 2019.
[27] N. E. Lustig, K. L. Saenger, and H.-M. Tong, "In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing," U.S. Patent 5 433 651, 1995.
[28] T. Takahashi, K. Tohyama, and T. Takahashi, "Polishing apparatus having endpoint detection device," U.S. Patent 5 672 091, 1997.
[29] B. Swedek and A. N. Wiswesser, "Endpoint detection with light beams of different wavelengths," U.S. Patent 6 190 234 B1, 2001.
[30] T. Matsuzaki, "CMP apparatus and method of polishing wafer using CMP," U.S. Patent 8 221 191, 2012.
[31] F. S. Lee, C. C. Chen, J. C. Lee, and H. C. Huang, "Method for endpoint detection for copper CMP," 2001.
[32] Y. Goldberg, "Feed-forward Neural Networks," Synthesis Lectures on Human Language Technologies, vol. 10, no. 1, pp. 41-49, 2017.
[33] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256, 2010.
[34] H. Zumbahlen, "Analog Filters," Linear Circuit Design Handbook, pp. 581-679, 2008.

QR CODE