簡易檢索 / 詳目顯示

研究生: 黃河穎
Ho-Ying Huang
論文名稱: 應用多目標蟻群最佳化於海底油管佈設
Applying Multi-Objective Ant Colony Optimization to Submarine Pipeline Layout
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 阮張榮
Zhang-Rong Ruan
蔡舜宏
Shun-Hung Tsai
郭永麟
Yong-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 蟻群最佳化演算法最佳化路徑海底管線蜂巢式單位區間方式
外文關鍵詞: ACO (ant colony optimization algorithm), optimal path planning, submarine pipeline, the hexagonal unit interval method
相關次數: 點閱:570下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣地區所需之石油皆需仰賴國外進口。因為油輪進港時必須考慮運輸油輪吃水深度、進港、轉向、火災預防及海水污染等問題,所以油輪皆採用外海卸油設備。油料藉由海底管線輸送到岸邊油槽,再泵至煉油工廠,以節省運輸費用。藉由使用海底油管輸油,將可加大油輪噸位,所需吃水深度、海底管線長度及管徑等。而其中海底油管路徑佈設最佳化與否將會影響施工成本與施工難易度,此議題卻鮮少被人所討論。因此,本論文採用蟻群最佳化演算法,以探討海底油管之最佳化路徑規劃。
首先,將地圖依海底等高線訂定五種不同的權重以代表地形傾斜程度,並採用蜂巢式單位區間方式來設計地圖,以降低油管彎頭損耗。其次,採用蟻群最佳化演算法(應用一組啟發式函數)與多目標蟻群最佳化演算法(應用二組啟發式函數),依地圖所設定之權重分配與最短距離,達到最佳化路徑之選擇。此外,也對原始外海輸油點附近之海域做不同輸油點之成效評估,以取得優於原先設置外海輸油點位置之較佳路徑,方便提供未來管線設置之選擇。模擬結果證實,多目標蟻群最佳化演算法優於蟻群最佳化演算法,並隨著疊代可找到海底管線設置之最佳化路徑。


Taiwan region relies on imports for its petroleum demands. Because issues such as depth of immersion, docking, steering, fire prevention, and water pollution must be taken into account when crude carriers enter the port, offshore tanker unloading equipment is used. Therefore, all crude carriers are equipped with sea dumping equipment. Oil is transported to the oil tank near the shore through the submarine pipeline and then is sent to the refinery plant to cut down transportation costs. By using the submarine pipeline to transport oil, the tonnage of crude carriers, required depth, submarine pipeline length, and pipeline diameter can be increased. However, literature survey indicates that the issues are rarely discussed concerning the submarine pipeline path layout optimization. Therefore, the Ant Colony Optimization (ACO) was adopted in this study to discuss the optimal path planning of submarine pipelines.
First, the map was given five different weights depending on the seabed contours to represent the slope of the terrain. Then, the hexagonal unit interval method was adopted to design the map and reduce the wear and tear of the pipeline bend. Secondly, the ACO (using one set of heuristic functions) and multi-objective ACO (using two sets of heuristic functions) were adopted to achieve optimal path selection based on the weight distribution and the shortest distance settings in the map. In addition, an effectiveness evaluation of nearby seas of oil stations was conducted to obtain a better path compared to the original offshore oil station location setting, thereby facilitating future pipeline layout selection. The simulation results show that the multi-objective ACO is superior to the ACO, and with iteration, the optimal path of submarine pipeline layout can be found.

中文摘要 Abstract 致謝 圖目錄 表目錄 第 1 章 簡介 1.1研究背景與動機 1.2論文架構 1.3論文研究架構 第 2 章 預備知識 2.1台灣海峽海底地形及組成 2.2管線設置與工程流程 2.3螞蟻系統原理 2.3.1人工螞蟻 2.3.2費洛蒙 2.3.3轉換機率 2.4蟻群最佳化演算法 2.4.1全域費洛蒙更新機制 2.4.2局部費洛蒙更新機制 2.4.3轉換規則 2.4.4極大-極小螞蟻系統 2.5多目標蟻群最佳化原理 第 3 章 蟻群演算法的路徑規劃 3.1模擬環境工程介紹 3.1.1工程介紹 3.1.2輸送原油各項係數 3.2蜂巢式單位區間法與柵格法比較 3.2.1路徑直線移動比較 3.2.2路徑轉彎比較 3.3海底地形權重分析 3.3.1地形權重分析 3.3.2模擬地圖結果 3.4多目標蟻群演算法之路徑規劃 第 4 章 模擬結果 4.1路徑規劃模擬 4.1.1雙目標配置比重λ=0.5 4.1.2雙目標配置比重λ=1 4.1.3雙目標配置比重λ=0.9 4.1.4雙目標配置比重λ=0.1 4.1.5雙目標配置比重λ=0 4.1.6 MOACO與ACO比較 4.2附近海域其他輸油起點之選擇模擬 第 5 章 結論與建議 5.1結論 5.2建議 參考文獻

[1] L. Yuxiao, “Overview of submarine pipeline global buckling,” 2013 Fourth International Conference on Digital Manufacturing and Automation (ICDMA), Qingdao, June 29-30, 2013, pp. 903-906.
[2] R. P. LaBelle and C. M. Anderson, “Offshore oil-spill occurrence rates,” Conference Proceedings on OCEANS '96. MTS/IEEE. Prospects for the 21st Century, vol. 2, Fort Lauderdale, American, September 23-26, 1996, pp. 751-753.
[3] X. Ming, G. Qingjun, L. Jianguo, L. Wei, and L. Xiao, “Simulation of submarine pipeline oil spill based on wave motion,” Second International Conference on 2010. ICCMS '10 Computer Modeling and Simulation, Sanya, Hainan , Jan 22-24, 2010, pp. 433-437.
[4] J. P. Ferreira, M. M. Crisostomo, and A. P. Coimbra, “Adaptive PD controller modeled via support vector regression for a biped robot,” IEEE Trans. Control Systems Technology, vol. 21, no. 3, pp. 941-949, 2013.
[5] C. Xi, C. Ragonesi, J. C. Galloway, and S. K. Agrawal, “Design of a robotic mobility system with a modular haptic feedback approach to promote socialization in children,” IEEE Trans. Haptics, vol. 7, no. 2, pp. 131-139, 2014.
[6] Z. Hao, C. Reardon, and L. E. Parker, “Real-Time multiple human perception with color-depth cameras on a mobile robot,” IEEE Trans. Cybernetics, vol. 43, no. 5, pp. 1429-1441, 2013.
[7] K. K. Wai, T. K. Hung, V. Vitiello, J. Clark, G. C. T. Chow, W. Luk, and Y. G. Zhong, “Dimensionality reduction in controlling articulated snake robot for endoscopy under dynamic active constraints,”IEEE Trans. Robotics, vol. 29, no. 1, pp. 15-31, 2013.
[8] C. K. Ho, K. Ho Moon, J. Y. Hoon, L. Fengyi, M. Hyungpil, K. J. Choon, and C. H. Ryeol, “Inspection robot for hanger cable of suspension bridge: mechanism design and analysis,”IEEE/ASME Trans. Mechatronics, vol. 18, no. 6, pp. 1665-1674, 2013.
[9] S. Hong, Y. Oh, D. Kim, and B. J. You, “Real-Time walking pattern generation method for humanoid robots by combining feedback and feedforward controller,” IEEE Trans. Industrial Electronics, vol. 61, no. 1, pp. 355-364, 2014.
[10] C. Sun, W. L. Xu, J. E. Bronlund, and M. Morgenstern, “Dynamics and compliance control of a linkage robot for food chewing,” IEEE Trans. Industrial Electronics, vol. 61, no. 1, pp. 377-386, 2014.
[11] K. Wakita, H. Jian, D. Pei, K. Sekiyama, and T. Fukuda, ”Human Walking Intention Based motion control of an omnidirectional-type cane robot,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 285-296, 2013.
[12] Y. Wen and J. Rosen, “Neural PID control of robot manipulators with application to an upper limb exoskeleton,” IEEE Trans. Cybernetics, vol. 43, no. 2, pp. 673-684, 2013.
[13] H. I. Seong and L. M. Jang, “Balancing and velocity control of a unicycle robot based on the dynamic model,” IEEE Trans. Industrial Electronics, vol. 62, no. 1, pp. 405-413, 2015.
[14] J. H. Boyle, S. Johnson, and A. A. D. Sanij, “Adaptive undulatory locomotion of a C. elegans inspired robot,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 439-448, 2013.
[15] P. M. Yanik, J. Manganelli, J. Merino, A. L. Threatt, J. O. Brooks, K. E. Green, and I. D. Walker, “A gesture learning interface for simulated robot path shaping with a human teacher,” IEEE Trans. Human-Machine Systems, vol. 44, no. 1, pp. 41-54, 2014.
[16] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz, “A UAV path planning with parallel ACO algorithm on CUDA platform,” 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, May 27-30, 2014, pp. 347-354.
[17] Z. Chao, Z. Ziyang, W. Daobo, and L. Meng, “UAV path planning method based on ant colony optimization,” 2010 Chinese Control and Decision Conference (CCDC), Xuzhou, Chinese, May 26-28, 2010, pp. 3790-3792.
[18] C. Teuliere, E. Marchand, and L. Eck, “3-D model-based tracking for UAV indoor localization,” IEEE Trans. Cybernetics, vol. 45, no. 5, pp. 869-879, 2015.
[19] L. R. Garcia Carrillo, I. Fantoni, E. Rondon, and A. Dzul, “Three-dimensional position and velocity regulation of a quad-rotorcraft using optical flow,” IEEE Trans. Aerospace and Electronic Systems, vol. 51, no. 1, pp. 358-371, 2015.
[20] Z. Daqi, H. Huan, and S. X. Yang, “Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace,” IEEE Trans. Cybernetics, vol. 43, no. 2, pp. 504-514, 2013.
[21] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane, “Path planning for autonomous underwater vehicles,” IEEE Trans. Robotics, vol. 23, no. 2, pp. 331-341, 2007.
[22] L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-Driven online coverage planning for autonomous underwater vehicles,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 6, pp. 1827-1838, 2013.
[23] Z. G. lei and J. H. Ming, “Global path planning of AUV based on improved ant colony optimization algorithm,” 2012 IEEE International Conference on Automation and Logistics (ICAL), Zhengzhou, August 15-17, 2012, pp. 606-610.
[24] E. Masehian and D. Sedighizadeh, “A multi-objective PSO-based algorithm for robot path planning,” 2010 IEEE International Conference on Industrial Technology (ICIT),Vi a del Mar, March 14-17, 2010, pp. 465-470.
[25] A. Z. Mohamed, L. S. Heon, and H. H. Yao, “Autonomous mobile robot system concept based on PSO path planner and VSLAM,” 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE),Shanghai, June 10-12, 2011, pp. 92-97.
[26] H. H. Chih and T. C. Chih, “Global path planning for autonomous robot navigation using hybrid metaheuristic GA-PSO algorithm,” 2011 SICE Annual Conference (SICE), Tokyo, September 13-18, 2011, pp. 1338-1343.
[27] Neeraj and A. Kumar, “Efficient hierarchical hybrids parallel genetic algorithm for shortest path routing,” 2014 5th International Conference on Confluence The Next Generation Information Technology Summit (Confluence), Noida, September 25-26, 2014, pp. 257-261.
[28] T. Hayet, K. M. Nacer, and K. Jilani, “Optimization of a mobile robot's path tracking,” 2011 International Conference on Communications Computing and Control Applications (CCCA), Hammamet, March 3-5, 2011, pp. 1-6.
[29] T. Davies and A. Jnifene, “Multiple waypoint path planning for a mobile robot using genetic algorithms,” 2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, La Coruna, July 12-14, 2006, pp. 21-26.
[30] G. S. Tewolde and S. Weihua, “Robot path integration in manufacturing processes: genetic algorithm versus ant colony optimization,” IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38, no. 2, pp. 278-287, 2008.
[31] Z. Zhiping, N. Yunfeng, and G. Min, “Enhanced ant colony optimization algorithm for global path planning of mobile robots,” 2013 International Conference on Computational and Information Sciences (ICCIS), Shiyang, June 21-23, 2013, pp. 698-701.
[32] Z. Yong, Z. Lin, and Z. Xiaohua, “Mobile robot path planning base on the hybrid genetic algorithm in unknown environment,” Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, November 26-28, 2008, pp. 661-665.
[33] C. S. Hiang, S. K. Lan, G. J. Hung, and C. C. Yun, “Ant colony system based mobile robot path planning,” 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC), Shenzhen, December 13-15, 2010, pp. 210-213.
[34] A. Ahuja, A, Pahwa, B. K. Panigrahi, and S. Das, “Pheromone-Based crossover operator applied to distribution system reconfiguration,” IEEE Trans. Power Systems, vol. 28, no. 4, pp. 4144 - 4151, 2013.
[35] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”IEEE Trans. Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39, 2006.
[36] M. Dorigo, G. Caro, and L. Gambardella, “Ant Algorithms for Discrete Optimization,” Artificial Life, vol. 5, no. 2, pp. 137-172, 1999.
[37] M. Dorigo and G. D. Caro, “Ant colony optimization: a new meta-heuristic,” 1999 Conference on Evolutionary Computation, Washington, DC, July 06-09, 1999, p. 1477 vol. 2.
[38] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29-41, 1996
[39] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997.
[40] L. M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric TSPs by ant colonies,” 1996 IEEE International Conference on Evolutionary Computation, Nagoya, May 20-22, 1996, pp. 622-627.
[41] W. Xiwu, W. Yongxin, W. Yinlong, and J. Yican, “Notice of retraction a new ant colony optimization algorithm for TSP,” 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), Chengdu, July 15-18, 2013, pp. 2055-2057.
[42] Z. Shaogang and L. Ming, “Path planning of Inspection robot based on ant colony optimization algorithm,” 2010 International Conference on Electrical and Control Engineering (ICECE), Wuhan, June 25-27, 2010, pp. 1474-1477.
[43] N. D. Hien and J. J. Ching, “A refined ant colony algorithm for optimal path planning,” 2011 International Conference on System Science and Engineering (ICSSE), Macau, China, June 8-10, 2011, pp. 125-130.
[44] D. A. Ling, D. Q. Bo, and D. G. Feng, “The new fusion algorithm in robot path planning application,” 2010 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, March 27-29, 2010, pp. 430-434.
[45] H. Qingyao, W. Qiang, Z. Xiaoguang, and X. Jin, “Path planning of mobile robot based on improved ant colony algorithm,” 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), XianNing, April 16-18, 2011, pp. 531-533.
[46] Z. Zheng, L. S. Rong, and Z. B. Tao, “Global path planning of mobile robot based on improved ant colony algorithm,” 2011 30th Chinese Control Conference (CCC), Yantai, July 22-24, 2011, pp. 4083-4088.
[47] Z. D. Bin and Y. J. Qiang, “Robot planning with ant colony optimization algorithms,” 2006 Chinese Control Conference, Harbin, Aug 7-11, 2006, pp. 1460-1465.
[48] L. J. Woo, L. D. Hyun, and L. J. Jang, “Global path planning using improved ant colony optimization algorithm through bilateral cooperative exploration,” 5th IEEE International Conference on Digital Ecosystems and Technologies Conference (DEST), Daejeon, Korea, May 31-June 3, 2011, pp. 109-113.
[49] Y. Chunyu and L. Xinbao, “Solution to 2D rectangular strip packing problems based on ACOs,” 2009 International Conference on Workshop, Intelligent Systems and Applications, Wuhan, May 23-24, 2009, pp. 1-4.
[50] G. Meijuan, X. Jin, and T. Jingwen, “Mobile robot global path planning based on improved augment ant colony algorithm,” 2008 Second International Conference on Genetic and Evolutionary Computing, Hubei, September 25-26, 2008, pp. 273-276.
[51] L. Tianjun, S. Krzysztof, M. A. M. D. Oca, T. Stutzle, and M. Dorigo, “Ant colony optimization for mixed-variable optimization problems,” IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 503-518, 2014.
[52] W. Lijuan, S. Jun, and B. Ghassan, “Enhanced ant colony algorithm for cost-aware data-intensive service provision,” 2013 IEEE Ninth World Congress on Services (SERVICES), Santa Clara, CA, June 28-July 3, 2013, pp. 227-234.
[53]X. Qinkun, W. Yi, G. Song, and W. Jiantao, “3D path planning based on elevation model and ant colony algorithm,” 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, August 26-27, 2013, pp. 74-77.
[54] N. Ganganath and C. C. Tsun, “A 2-dimensional ACO-based path planner for off-line robot path planning,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Beijing, October 10-12, 2013, pp. 302-307.
[55] H. Yufeng, Z. Qinghua, L. Jianye, X. Guili, and D. Xiaoyi, “Path planning for indoor UAV based on ant colony optimization,” 2013 25th Conference on Chinese Control and Decision (CCDC), Guiyang, May 25-27, 2013,pp. 2919-2923.
[56] A. M. Mora, J. J. Merelo, P. A. Castillo, and M. G. Arenas, “hCHAC: A family of MOACO algorithms for the resolution of the bi-criteria military unit pathfinding problem,” Computers & Operations Research, vol. 40, no. 6, pp. 1524-1551, 2013.
[57] A. M. Mora, J. J. Merelo, P. A. Castillo, J. L. J. Laredo, and C. Cotta, “Influence of parameters on the performance of a MOACO algorithm for solving the bi-criteria military path-finding problem,” 2008 IEEE World Congress on Computational Intelligence Evolutionary Computation, Hong Kong, June 1-6, 2008, pp. 3507-3514.
[58] M. Metea and J. Tsai, “Route planning for intelligent autonomous land vehicles using hierarchical terrain representation,” 1987 IEEE International Conference on Robotics and Automation. Proceedings, Mar, 1987, pp. 1947-1952.
[59] 賴瑞應、曾文傑、張道光、林澤熙、鄧耀里、陳斌哲,「港灣構造物功能性設計分析方法之研究」,交通部運輸研究所,三月,2004。
[60] T. Stutzle and H. Hoos, “MAX-MIN Ant System and local search for the traveling salesman problem,” 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, April 13-16, 1997, pp. 309-314.
[61] C. G. Martinez, O. Cordon, and F. Herrera, “A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP,” European Journal of Operational Research, vol. 180, no. 1, pp. 116-148, 2007.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE