簡易檢索 / 詳目顯示

研究生: 陳頡
Chieh Chen
論文名稱: 麥克納姆輪全向車故障程度檢測
Fault Degree Detection of Omni-directional Vehicle with Mecanum Wheel
指導教授: 張以全
I-Tsyuen Chang
口試委員: 陳亮光
Liang-Kuang Chen
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 全向自走車麥克納姆輪車輪故障故障檢測閾值
外文關鍵詞: Omni-directional vehicle, Mecanum wheel, wheel fault, fault detection, threshold
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討在麥克納姆輪全向車發生車輪故障時的情況,並將故障情 況進行不同程度的分類。通過從感測器擷取資料,將其用來分析故障的狀態。首 先藉由電流檢測判別車輪是否故障,接著利用推導之黏滯摩擦係數來判定故障的 程度。實驗架設是藉由在馬達上增加電磁式煞車器去模擬實際車輪發生故障鎖住 的狀況,藉由控制不同程度的煞車扭力來模擬車輪各種程度的故障情況。實驗內 容為測量不同轉速在不同故障程度的參數 (轉速、電壓、電流) 的變化。研究分析 的部分分為兩個部分,第一部分是藉由觀察電流與轉速的變化,來判定是否故 障;第二部分以麥克納姆輪全向車之數學模型為基礎,推導出系統之黏滯摩擦係 數 (Viscous friction coefficient) 作為判別車輪是否完全故障的依據,並訂定出一個 通用於各種轉速的閾值來判定車輪是否完全故障。


    This thesis discusses the wheel fault for a Mecanum omni-directional vehicle, and classifies the failure situation in different degrees. By extracting data from sensors, it is used to analyze the different state of the controlled fault. Firstly, the wheel fault was de- termined by current detection, and then the degree of fault was determined by the deduced viscous friction coefficient. The experiment is set up by adding electromagnetic brake on the motor to simulate the actual wheel failure locking condition, by controlling different degrees of brake torque to simulate the wheel of various degrees of failure. The exper- imental content is to measure the change of parameters (speed, voltage and current) of different speed in different fault degrees. The research and analysis is done by observing the change between the current and speed, to determine whether a fault is present, then by using the mathematical model of our omni-directional kinematics, the Viscous friction coefficient, which represents the state of the system, is derived to determine the various degree of fault introduced to the system.

    論文摘要.......................... ............. I Abstract........................... ............. II 誌謝.......................................... III 目錄.......................................... IV 圖目錄 ........................................ VI 表目錄 ........................................ IX 符號說明....................................... X 1 緒論........................................ 1 1.1 前言..................................... 1 1.2 文獻回顧.................................. 5 1.2.1 麥克納姆輪及其配置介紹 .................... 5 1.2.2 麥克納姆輪應用.......................... 8 1.2.3 麥克納姆輪全向車故障檢測 ................... 9 1.2.4 麥克納姆輪全向車路徑規劃 ................... 10 1.3 研究動機與本文架構 ........................... 11 2 麥克納姆輪全向車模型 ............................. 12 2.1 運動學模型(Kinematicmodel) ...................... 12 2.2 動力學模型(Dynamicsmodel) ...................... 19 3 全向車故障檢測 ................................. 21 3.1 訊號檢測.................................. 22 3.2 模型式故障檢測 .............................. 23 3.2.1 研究方法.............................. 23 3.2.2 故障程度判定 ........................... 26 3.3 訊號後處理................................. 27 3.4 故障模擬.................................. 30 4 實驗結果與分析 ................................. 31 4.1 實驗設備介紹 ............................... 31 4.1.1 全向車供電裝置.......................... 32 4.1.2 全向車煞車裝置.......................... 33 4.1.3 感測器 ............................... 35 4.2 訊號檢測.................................. 38 4.3 模型式故障檢測 .............................. 45 4.3.1 馬達參數.............................. 46 4.3.2 車輪故障變化 ........................... 50 5 結論與未來展望 ................................. 63 5.1 結論..................................... 63 5.2 未來展望.................................. 64 參考文獻....................................... 65

    [1] I. B. Erland, “Wheels for a course stable selfpropelling vehicle movable in any de- sired direction on the ground or some other base,” 1975.
    [2] I. Zeidis and K. Zimmermann, “Dynamics of a fouíwheeled mobile robot with mecanum wheels,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2019.
    [3] P. Viboonchaicheep, A. Shimada, and Y. Kosaka, “Position rectification control for mecanum wheeled omni-directional vehicles,” in IECON’03. 29th Annual Confer- ence of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), vol. 1, pp. 854–859 vol.1, 2003.
    [4] R. Xin, Z. Zou, and W. Mu, “A design of hull coating robot based on mecanum wheel and electromagnet,” in 2019 International Conference on Intelligent Comput- ing, Automation and Systems (ICICAS), pp. 697–702, 2019.
    [5] Y. Liu, H. Li, L. Ding, L. Liu, T. Liu, J. Wang, and H. Gao, “An omnidirectional mobile operating robot based on mecanum wheel,” in 2017 2nd International Con- ference on Advanced Robotics and Mechatronics (ICARM), pp. 468–473, 2017.
    [6] O. Diegel, A. Badve, G. Bright, J. Potgieter, and S. Tlale, “Tlale, “improved mecanum wheel design for omni-directional robots,” Australasian Conference on Robotics and Automation, 05 2012.
    [7] E. C. Orozco-Magdaleno, F. Gómez-Bravo, E. Castillo-Castañeda, and G. Carbone, “Evaluation of locomotion performances for a mecanum-wheeled hybrid hexapod robot,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 3, pp. 1657–1667, 2021.
    [8] K.Piemngam,I.Nilkhamhang,andP.Bunnun,“Developmentofautonomousmobile robot platform with mecanum wheels,” in 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 90– 93, 2019.
    [9] M. Y. Naing, A. S. Oo, I. Nilkhamhang, and T. Than, “Development of computer vision-based movement controlling in mecanum wheel robotic car,” in 2019 First
    International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 45–48, 2019.
    [10] A. S. Oo, M. Y. Naing, I. Nilkhamhang, and T. Than, “Experiment on real-time image processing in the controlling of mecanum wheel robotic car,” in 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 41–44, 2019.
    [11] B.I.AdamovandG.R.Saypulaev,“Influenceofdissipativeforcesandthedesignof mecanum-wheels on the omnidirectional platform dynamics,” in 2021 International Conference ”Nonlinearity, Information and Robotics” (NIR), pp. 1–6, 2021.
    [12] B. I. Adamov and G. R. Saypulaev, “A study of the dynamics of an omnidirectional platform, taking into account the design of mecanum wheels and multicomponent contact friction,” in 2020 International Conference Nonlinearity, Information and Robotics (NIR), pp. 1–6, 2020.
    [13] S. MELLAH, G. GRATON, E. M. E. ADEL, M. OULADSINE, and A. PLAN- CHAIS, “Detection amp; isolation of sensor and actuator additive faults in a 4- mecanum wheeled mobile robot (4-mwmr),” in 2019 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–6, 2019.
    [14] P.I.Chang,S.C.Fan-Chiang,C.Chen,andC.Y.Lan,“Realtimefaultdetectionfor mecanum wheel omnidirectional robot platform,” in 2021 21st International Con- ference on Control, Automation and Systems (ICCAS), pp. 1969–1973, 2021.
    [15] S. MELLAH, G. GRATON, E. M. EL ADEL, M. OULADSINE, and A. PLAN- CHAIS, “4-mecanum wheeled mobile robot actuator fault detection amp; isolation using unknown input observer-based approach,” in 2020 European Control Confer- ence (ECC), pp. 1442–1447, 2020.
    [16] Y. Tu and H. Min, “Calibration method of mecanum wheeled mobile robot odome- ter,” in 2019 Chinese Automation Congress (CAC), pp. 3014–3019, 2019.
    [17] Y. Xu, Y. Zhao, and S. Zhao, “Grid line tracking omnidirectional robot based on visible light sensor and mecanum wheel pid control,” in 2021 7th International Sym- posium on Mechatronics and Industrial Informatics (ISMII), pp. 57–60, 2021.
    [18] E. Malayjerdi, H. Kalani, and M. Malayjerdi, “Self-tuning fuzzy pid control of a four-mecanum wheel omni-directional mobile platform,” in Electrical Engineering (ICEE), Iranian Conference on, pp. 816–820, 2018.
    [19] S. Mishra, M. Sharma, and S. Mohan, “Behavioural fault tolerant control of an omni directional mobile robot with four mecanum wheels,” Defence Science Jour- nal, vol. 69, pp. 353–360, 07 2019.
    [20] X. Lu, X. Zhang, G. Zhang, and S. Jia, “Design of adaptive sliding mode controller for four-mecanum wheel mobile robot,” in 2018 37th Chinese Control Conference (CCC), pp. 3983–3987, 2018.

    無法下載圖示 全文公開日期 2025/08/04 (校內網路)
    全文公開日期 2025/08/04 (校外網路)
    全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE