簡易檢索 / 詳目顯示

研究生: 蕭聖翔
SHEN-HSIANG SHIAO
論文名稱: 新4D自治渾沌系統之控制與同步並實現聲音密碼系統在FPGA上
Control and Synchronization of New 4D Autonomous Chaotic System and Implement Audio Cryptosystem via FPGA
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 陳金聖
Chin-Sheng Chen
郭振華
Jen-Hwa Guo
郭永麟
Yong-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 73
中文關鍵詞: 渾沌系統T-S模糊控制滑模控制最優控制加密系統FPGA
外文關鍵詞: Chaotic system, T-S fuzzy theory, Sliding mode control, Optimal control, Audio cryptosystem, FPGA
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文在研究一個新四維自治渾沌系統,並運用相圖、散度分析、平衡點分析、Lyapunov指數、bifurcation等技術,分析此系統的特性與運動行為,再利用電路模擬軟體Multisim模擬實際電路,與數值分析相互比較。接著以T-S模糊控制、最優控制和滑模控制等控制理論,設計控制器運用於此渾沌系統,使主系統和從系統可以同步。硬體方面則是將渾沌系統實現在FPGA板上,經由FPGA音源輸出端將此系統的動態行為顯現於示波器上,並且對聲音做加解密的處理,增加訊號的安全性。


The new 4D autonomous chaotic system is presented in this study. We use techniques include phase portraits, divergence computing, power spectrum analysis, equilibrium analysis and Lyapunov exponent diagrams to analysis and understanding of the dynamical behaviors of the chaotic system. Furthermore, we use electronic circuit simulation software named Multisim to simulate the real circuit. Compare with numerical analysis. In the part of control theory, by applying T-S fuzzy theory, optimal control and sliding mode control theory respectively, control and synchronization of the new 4D autonomous chaotic system is accomplished. On hardware architecture, we implement the new 4D autonomous system module based on FPGA. We can observe the dynamic behaviors on oscilloscope. Moreover an audio cryptosystem of chaotic system is achieved. The encryption and decryption are accomplished via logic operation.

摘要 Abstract List of Figures List of Tables Chapter 1 Introduction Chapter 2 Nonlinear Dynamics Analysis of the new 4D autonomous System 2.1 Phase portraits 2.2 Equilibrium analysis 2.3 Divergence analysis 2.4 Power spectrum analysis 2.5 Lyapunov exponent and Lyapunov dimension 2.6 Design and realization of electronic circuit Chapter 3 Control and Synchronization of the new 4D autonomous System Using T-S Fuzzy Theory and Optimal Theory 3.1 Construction of the T-S fuzzy model of the new 4D autonomous System 3.2 T-S fuzzy control of the new 4D autonomous system 3.3 T-S fuzzy synchronization of the new 4D autonomous system 3.4 T-S fuzzy combine with optimal control of the new 4D autonomous system 3.5 T-S fuzzy combine with optimal synchronization of the new 4D autonomous system Chapter 4 Sliding Mode Controller Design for the new 4D autonomous system of continuous and discrete time models 4.1 The theory of the sliding mode control 4.2 Construction of the sliding mode controller for the new 4D autonomous System 4.3 The theory of discrete-time sliding mode control 4.4 Construction of discrete-time sliding mode controller for the new 4D autonomous System Chapter 5 FPGA implementation of audio cryptosystem based on the new 4D autonomous system 5.1 The FPGA introduction 5.2 The new 4D autonomous system for FPGA 5.3 Capture and control the audio data via audio codec 5.4 Audio encryption 5.5 Audio decryption 5.6 Verify the encrypted and decrypted function Chapter 6 Conclusion References.

[1] Lorenz, and Edward N. "Deterministic non-periodic flows." Journal of the atmospheric sciences 20.2 (1963): 130-141.
[2] Strogatz, and Steven H. "Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering." Westview press (2014).
[3] Chang, and Yi-Fang. "Chaos, Fractal in Biology, Biothermodynamics and Matrix Representation on Hypercycle." NeuroQuantology 11.4 (2013).
[4] Yang, Junqi, Yantao Chen, and Fanglai Zhu. "Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication." Applied Mathematics and Computation 229 (2014): 227-238.
[5] Awad, and Abir. "A new chaos-based cryptosystem for secure transmitted images." arXiv preprint arXiv 1503.00366 (2015).
[6] Chadli, Mohammed, and Ivan Zelinka. "Chaos synchronization of unknown inputs Takagi–Sugeno fuzzy: Application to secure communications." Computers & Mathematics with Applications 68.12 (2014): 2142-2147.
[7] Ngouonkadi, EB Megam, H. B. Fotsin, and P. Louodop Fotso. "Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication." Physica Scripta 89.3 (2014): 035201.
[8] Iqbal, Sajid, et al. "Introducing undergraduate electrical engineering students to chaotic dynamics: Computer simulations with logistic map and buck converter." Modelling Symposium (AMS), 2014 8th Asia, IEEE (2014).
[9] Effati, Sohrab, J. Saberi-Nadjafi, and H. Saberi Nik. "Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems." Applied Mathematical Modelling 38.2 (2014): 759-774.
[10] Mohammadzadeh, Ali, Okyay Kaynak, and Mohammad Teshnehlab. "Two-mode Indirect Adaptive Control Approach for the Synchronization of Uncertain Chaotic Systems by the Use of a Hierarchical Interval Type-2 Fuzzy Neural Network." Fuzzy Systems, IEEE Transactions on 22.5 (2014): 1301-1312.
[11] Panajotov, Krassimir, and Mustapha Tlidi. "Chaotic behavior of cavity solitons induced by time delay feedback." Optics letters 39.16 (2014): 4739-4742.
[12] Vaidyanathan, Sundarapandian, and Sivaperumal Sampath. "Sliding mode controller design for the global chaos synchronization of Coullet systems." Advances in Computer Science and Information Technology. Networks and Communications, Springer Berlin Heidelberg (2012): 103-110.
[13] Pai, and Ming-Chang. "Global synchronization of uncertain chaotic systems via discrete-time sliding mode control." Applied Mathematics and Computation 227 (2014): 663-671.
[14] Wu, Zheng-Guang, et al. "Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model." Fuzzy Systems, IEEE Transactions on 22.1 (2014): 153-163.
[15] Boulkroune, Abdesselem, et al. "Adaptive fuzzy control‐based projective synchronization of uncertain nonaffine chaotic systems." Complexity (2014).
[16] Miladi, Yosra, Moez Feki, and Nabil Derbel. "Stabilizing the unstable periodic orbits of a hybrid chaotic system using optimal control." Communications in Nonlinear Science and Numerical Simulation 20.3 (2015): 1043-1056.
[17] Ge, Zheng-Ming, and Cheng-Hsiung Yang. "Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control." Chaos, Solitons & Fractals 42.2 (2009): 994-1002.
[18] Enayatifar, Rasul, Abdul Hanan Abdullah, and Ismail Fauzi Isnin. "Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence." Optics and Lasers in Engineering 56 (2014): 83-93.
[19] Chen, Jun-xin, et al. "A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism." Communications in Nonlinear Science and Numerical Simulation 20.3 (2015): 846-860.
[20] Atteya, Ahmed M., and Ahmed H. Madian. "A hybrid Chaos-AES encryption algorithm and its impelmention based on FPGA." New Circuits and Systems Conference (NEWCAS), 2014 IEEE 12th International (2014).
[21] Guo-Yuan, Qi, and Sandra Bazebo Matondo. "Hyper-chaos encryption using convolutional masking and model free unmasking." Chinese Physics B 23.5 (2014): 050507.
[22] Yang, Junqi, and Fanglai Zhu. "Synchronization for Uncertain Chaotic Systems with Channel Noise and Chaos-based Secure Communications." Unifying Electrical Engineering and Electronics Engineering (2014): 1483-1491.
[23] Kwok, H. S., and Wallace KS Tang. "A fast image encryption system based on chaotic maps with finite precision representation." Chaos, Solitons & Fractals 32.4 (2007): 1518-1529.
[24] Dadras, Sara, et al. "Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form." Nonlinear Dynamics 67.2 (2012): 1161-1173.
[25] Frederickson, Paul, et al. "The Liapunov dimension of strange attractors." Journal of Differential Equations 49.2 (1983): 185-207.
[26] Wang, Yan-Wu, Zhi-Hong Guan, and Hua O. Wang. "LMI-based fuzzy stability and synchronization of Chen's system." Physics Letters A 320.2 (2003): 154-159.
[27] Das, Saptarshi, Anish Acharya, and Indranil Pan. "Simulation studies on the design of optimum PID controllers to suppress chaotic oscillations in a family of Lorenz-like multi-wing attractors." Mathematics and Computers in Simulation 100 (2014): 72-87.
[28] Qing-Lai, Wei, Liu De-Rong, and Xu Yan-Cai. "Policy iteration optimal tracking control for chaotic systems by using an adaptive dynamic programming approach." Chinese Physics B 24.3 (2015): 030502..
[29] Tanaka, Kazuo, and Hua O. Wang. "Fuzzy control systems design and analysis: a linear matrix inequality approach." John Wiley & Sons (2004).
[30] Behjameh, Mohammad Reza, Hadi Delavari, and Ahmadreza Vali. "Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control." Journal of Applied and Computational Mechanics 1.1 (2014): 26-34.
[31] Cao, Lu, and Xiaoqian Chen. "Input–output linearization minimum sliding mode error feedback control for synchronization of chaotic system." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2015): 0959651815583196.
[32] Ouannas, Adel, and Zaid Odibat. "Generalized synchronization of different dimensional chaotic dynamical systems in discrete time." Nonlinear Dynamics (2015): 1-7.
[33] Zhou, Yicong, Long Bao, and CL Philip Chen. "A new 1D chaotic system for image encryption." Signal processing 97 (2014): 172-182.
[34] Hamdi, Mimoun, et al. "A new secure and efficient scheme of ADPCM encoder based on chaotic encryption." IEEE conference, 1st International Conference on Advanced Technologies for Signal and Image Processing (2014).
[35] Hermassi, Houcemeddine, et al. "Security analysis of an image encryption algorithm based on a DNA addition combining with chaotic maps." Multimedia Tools and Applications 72.3 (2014): 2211-2224.
[36] Obregón-Pulido, G., et al. "Encryption in chaotic systems with sinusoidal excitations." Mathematical Problems in Engineering 2014 (2014).
[37] Eldin, Salwa M. Serag, et al. "New audio encryption package for TV cloud computing." International Journal of Speech Technology 18.1 (2015): 131-142.
[38] Tamimi, Abdelfatah A., and Ayman M. Abdalla. "An Audio Shuffle-Encryption Algorithm." Proceedings of the World Congress on Engineering and Computer Science. Vol. 1. (2014).
[39] Zheng, Hanzhong, Simin Yu, and Xiangqian Xu. "A Systematic Methodology for Multi-Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation." Mathematical Problems in Engineering 2014 (2014).
[40] Madurawe, and Raminda U. "Field programmable gate array with convertibility to application specific integrated circuit." (2004).
[41] Chaudhary, and Kamal. "FPGA having logic element carry chains capable of generating wide XOR functions." (1999).
[42] Chan, King W. "FPGA architecture including direct logic function circuit to I/O interconnections." (1994).
[43] Bailis, Robert, et al. "Method and system for use of a field programmable gate array (FPGA) function within an application specific integrated circuit (ASIC) to enable creation of a debugger client within the ASIC." (2001).
[44] Tiri, Kris, and Ingrid Verbauwhede. "A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation." Proceedings of the conference on Design, automation and test in Europe-Volume 1. IEEE Computer Society (2004).
[45] 友晶科技http://www.terasic.com.tw/

無法下載圖示 全文公開日期 2020/07/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE