簡易檢索 / 詳目顯示

研究生: 林梓翔
Zih-Siang Lin
論文名稱: 基於擴增式卡爾曼濾波器的四旋翼無人飛行載具之模糊分散滑動模式軌跡追蹤控制
Extended Kalman Filter Based Fuzzy Decentralized Sliding-Mode Trajectory Tracking Control of Quadrotor Unmanned Aerial Vehicles
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
游文雄
Wen-Shyong Yu
蔡奇謚
Chi-Yi Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 四旋翼無人飛行載具模糊分散滑動模式控制器姿態控制軌跡追蹤
外文關鍵詞: QUAVs, Fuzzy Decentralized Sliding-Mode Controller (FDS, Attitude Control, Trajectory Tracking
相關次數: 點閱:365下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為戶外自主飛行的四旋翼無人飛行載具的設計與控制。首先,建立感測器系統數學模式,將其線性化並以轉換成線性數位系統,以利於設計擴增式卡爾曼濾波器。並驗證全球定位系統輔助慣性導航系統的擴增式卡爾曼濾波器(EKF)的定位確實比僅有GPS或INS的精度更高且可靠。接著,以模糊滑動模式分散控制法則應用於姿態 (即滾轉、俯仰、偏航)及高度。此控制法則並不需要QUAV的動態數學模式,僅需輸入及輸出數據,以建立有效的規則庫,經由每個子系統的三個比例因子及滑動面系數的調整。接著,即時規劃軌跡以提供控制器進行所設定的任務。並經由人機介面程式,讓使用者能快速且方便的了解飛行載具的狀態,並且以無線模組操控嵌入式系統的人機介面程式,完成使用者設定的動作。在本論文中四旋翼從地面之起始點起飛後,追蹤所規劃的軌跡,結束軌跡追蹤後,即自動降落至指定的結束點,完成所設定的任務。最後,並比較使用EKF進行軌跡估測之軌跡飛行追蹤控制與僅使用GPS及INS訊號之軌跡飛行追蹤控制的優劣,以驗證所建議的方法之有效性、務實性及強健性。


    Due to advantages and disadvantages of inertia navigation system (INS) and global positioning system (GPS), it is not suitable for the only use of GPS or INS for the measured velocity and position of outdoor QUAV. Furthermore, the computation of the rotation described by Euler angle is inefficient; its description sometimes possesses the singularity problem. Hence, it is not suitable for the embedded single board computer to calculate the corresponding signals using the Euler angle based rotation description. In this thesis, the nonlinear mathematical model of sensors including GPS and INS is first established. Its linearized model around the GPS signal is constructed for the discrete version of extended Kalman filter (EKF). The estimated position and velocity from EKF are employed to correct the position and velocity of INS such that the controller design is more effective. The compared performances between GPS and INS, and GPS-aided INS confirm the effectiveness of the estimated signal through GPS-aided INS. Subsequently, the EKCF-based fuzzy decentralized path tracking control (FDPTC) is applied for the path tracking of an outdoor QUAV. The proposed control does not need the mathematical dynamic model of QUAV, it only needs its input/output data to construct the fuzzy rule table. After that, three factors and the coefficients of sliding surface for each subsystem are tuned to obtain the satisfactory control performance. Finally, the compared experiments of circular path confirm the effectiveness and robustness of the proposed method.

    中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景、動機與目的 1.2 論文架構 第二章 系統架構及問題陳述 2.1 系統架構 2.1.1 動力系統 2.1.2 嵌入式系統 2.1.3 全球定位系統及動態感知系統 2.1.4 LiDar-Lite雷射測距儀 2.1.5 無線傳輸系統 2.2 任務敘述 2.2.1 四旋翼之相關座標及運動描述 2.2.2 結構及工作原理 2.2.3 問題陳述 第三章 全球定位系統與慣性導航系統之整合定位 3.1 GPS與INS座標系統的關係 3.2 整合式定位 3.2.1 擴增式卡爾曼濾波器模型 3.2.2 線性化 3.2.3 擴增式卡爾曼濾波器 第四章 模糊分散滑動控制之設計 4.1 系統流程圖 4.2 姿態控制器 4.3軌跡規劃 第五章 實驗結果與討論 5.1實驗設置 5.1.1實驗參數設置 5.2 實驗結果 5.2.1 GPS訊號與INS訊號整合後之實驗結果 5.2.2 LiDar-Lite雷射測距儀校正實驗(Sensor Calibration) 5.2.3 實際飛行結果 5.3 討論 第六章 結論與未來之研究 6.1 結論與未來之研究 參考文獻 附錄A

    [1] A. Zul-Azfar and D. Hazry, “A simple approach on implementing IMU sensor fusion in PID controller for stabilizing quadrotor flight control,” IEEE 7th International Colloquium on Signal Processing and its Applications, pp. 28-32, Mar. 2011.
    [2] J. Li and Y. Li, “Dynamic analysis and PID control for a quadrotor,” IEEE International Conference on Mechatronics and Automation, Beijing, China, pp. 573-578, Aug. 2011.
    [3] A. R. Patel, M. A. Patel, and D. R. Vyas, “Modeling and analysis of quadrotor using sliding mode control,” IEEE 44th Southeastern Symposium on System Theory, University of North Florida, Jacksonville, FL, pp. 111-114, Mar. 2012.
    [4] Carrillo, L.R. G., Dzul, A., Lozano, R., “Hovering quad-rotor control: A comparison of nonlinear controllers using visual feedback,” IEEE Trans. Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3159-3170, Oct. 2012.
    [5] A. Kirli, V. E. Omurlu, U. Buyuksahin, R. Artar, R., and E. Ortak, “Self tuning fuzzy PD application on TI TMS320F28335 for an experimental stationary quadrotor,” Education and Research Conference (EDERC), 4th European Publication, pp. 42-46, Dec. 2010.
    [6] C. L. Hwang and C. Jan, “Fuzzy decentralized sliding-mode under-actuated trajectory-tracking control for quadrotor unmanned aerial vehicle,” IEEE Int. Conf. on Fuzzy Systems, FUZZ2012, Brisbane, Australia, pp. 1-10, June 10~15, 2012.
    [7] M. Mohammadi and A. M. Shahri, “Decentralized adaptive stabilization control for a quadrotor UAV,” RSI/ISM International Conference on Robotics and Mechatronics, Tehran, Iran, pp. 288-292, Feb. 2013.
    [8] G. M. Hoffmann and S. L. Waslander, “Quadrotor helicopter trajectory tracking control,” AIAA Guidance, Navigation and Control Conference and Exhibit, pp. 18-21, Aug. 2008.
    [9] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive quadrotor control: Attitude, altitude and position experimental studies,” IET, Control Theory & Applications, vol.6, no.12, pp. 1812-1827, Aug. 2012.
    [10] Y. Yang, and Jay A. Farrell, “Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control,” IEEE Trans. Robotics and Autom., vol. 19, no. 2, pp. 269-282, Apr. 2003
    [11] D. E. Schinstock, “GPS-aided INS solution for OpenPilot,” Kansas State University, 2004.
    [12] G. Lachapelle, “Sigma-point Kalman filtering for integrated GPS and inertial navigation,” IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 2, pp. 750-756, Apr. 2006.
    [13] C. H. Lim, T. S. Lim, and V. C. Koo, “A MEMS based, low cost GPS-aided INS for UAV motion sensing,” 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besançon, France, pp. 576-581, July 8-11, 2014.
    [14] K. W. Jeong, K. J. Kim, Y. K. Kim, H. W. Kim, and J. Lee, “Outdoor localization for quad-rotor using extended Kalman filter and path planning,” International Journal of Humanoid Robotics, vol. 11, no. 3, pp. 1-14, 2014.
    [15] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1216-1227, Dec. 2006.
    [16] C. G. Mayhew, R. G. Sanfelice, and A. Teel, “Quaternion-based hybrid control for robust global attitude tracking,” IEEE Trans. Autom. Contr., vol. 56, no. 11, pp. 2555-2566, Nov. 2011.
    [17]Y. Zhong, S. Gao, and W. Li, “A quaternion-based method for SINS/SAR integrated navigation system,” IEEE Trans. Aerospace and Electronic Syst., vol. 48, no. 1, pp. 514-524, Jan. 2012.
    [18]C. Jahanchahi and D. P. Mandic, “A class of quaternion Kalman filters,” IEEE Trans. Neural Net. & Learning Syst., vol. 25, no. 3, pp. 533-544, Mar. 2014.
    [19] J. Navarro-Moreno, R. M. Fernández-Alcalá, and J. C. Ruiz-Molina, “A quaternion widely linear model for nonlinear Gaussian estimation,” IEEE Trans. Signal Processing, vol. 62, no. 24, pp. 6414-6424, Dec. 2014.
    [20] D. Xu, Y. Xia, and D. P. Mandic, “Optimization in quaternion dynamic systems: Gradient, Hessian, and learning algorithms,” IEEE Trans. Neural Net. & Learning Syst., to be appeared, 2016.
    [21] C. L. Hwang, “Microprocessor-based fuzzy decentralized control of 2-D piezo-driven systems,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1411-1420. Mar. 2008.
    [22] C. L. Hwang, H. M. Wu, and C. L. Shih, “Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle,” IEEE Trans. Contr. Syst. Technol., vol. 17, no. 3, pp. 658-670, May. 2009.
    [23] Homepage of Arducopter:http://copter.ardupilot.com/

    QR CODE