簡易檢索 / 詳目顯示

研究生: 張恩碩
EN-SHUO CHANG
論文名稱: 製備凹槽型奈米圖案藍寶石基板用以改善紫外光C波段發光二極體之發光強度
Preparation of concave nano patterns sapphire substrate to improve light intensity of ultraviolet C light-emitting diodes
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 楊尚達
郭東昊
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 陽極氧化鋁光萃取效率
外文關鍵詞: UVC-LED, anodic aluminium oxide, light extraction efficiency
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提升UVC-LED 之發光強度方法主要有改善磊晶品質,包含p-GaN層之接觸電極改善,但改善p-GaN之磊晶有其困難度,提升成效有限。因此本實驗決定從藍寶石基板端做處理,利用陽極氧化鋁蝕刻遮罩,再以ICP蝕刻將AAO遮罩之凹槽型奈米圖案轉移至藍寶石基板上,以提升UVC-LED之光萃取效率,並提升整體發光強度。製程中藉由調整陽極氧化條件,包含酸液濃度、電極工作距離、擴孔時間,製備大尺寸之奈米圖案遮罩,並藉由ICP-RIE製程將凹槽圖案轉移到藍寶石基板上。
    在基板前處理中,蒸鍍鋁膜的品質將會影響後續陽極氧化反應之成功與否,因此鍍鈦鋁之機台轉換時需要確保將樣品連續抽真空。在製程後半段利用ICP機台製備NPSS基板,但LED pad面有相變化的情況,可能原因為藍寶石基板散熱差、破片黏貼於矽基板,容易有熱效應之問題,使最後製程溫度>270℃。LED pad相變化將導致正向電壓上升、功率下降之問題。不過在最後UVC-LED之光學量測上,亮度仍有提升最高20% ,若未來改善LED pad相變化問題,可望大幅提升UVC-LED發光強度。


    The primary methods for improving the emission intensity of UVC-LEDs involve enhancing the epitaxial quality, particularly focusing on improvements in the p-GaN layer and its contact electrodes. However, achieving significant enhancements through p-GaN epitaxy improvements presents challenges and limited effectiveness. Consequently, this experiment aims to address the issue from the substrate side.
    The approach involves utilizing an anodic aluminum oxide (AAO) etching mask, which is subsequently transferred onto a sapphire substrate using inductively coupled plasma (ICP) etching. This process aims to enhance the light extraction efficiency of UVC-LEDs and elevate overall luminous intensity. During fabrication, adjustments are made to the anodization conditions, including acid concentration electrode working distance, and enlarging time to create large-sized nano pattern masks. The ICP-RIE process is then employed to transfer the pattern onto the sapphire substrate.
    In the initial substrate preparation, the quality of the aluminum film deposited by thermal evaporation significantly impacts the success of subsequent AAO formation. Therefore, during the transition between titanium and aluminum deposition, ensuring continuous vacuum pumping of the samples is crucial. In the latter stages of the process, NPSS (nano-patterned sapphire substrate) is prepared using an ICP machine. However, there are observed phase changes on the LED pad surface, possibly due to differences in sapphire substrate heat dissipation or silicon wafer fragments adhering to the surface, leading to thermal effects. As a result, the final process temperature exceeds 270°C. These LED pad phase changes result in increased forward voltage and decreased power output. Nevertheless, in the final electrical measurements of UVC-LEDs, brightness still exhibits a maximum improvement of 20% . Addressing the LED pad variation issue in the future holds the potential for significantly enhancing UVC-LED luminous intensity.

    摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VI 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 研究動機 6 第二章 文獻回顧 7 2.1奈米圖案基板發展概況 7 2.1.1奈米球微影法 8 2.1.2奈米壓印技術 11 2.1.3陽極氧化鋁遮罩法 13 2.2提升LED光萃取效率方法 19 2.2.1覆晶結構 19 2.2.2網狀光子晶體 21 2.2.3表面微結構與形狀 24 2.2.4 陽極氧化鋁遮罩法 26 2.3 UVC-LED關鍵技術發展概況 29 第三章 實驗方法 32 3.1實驗流程架構 32 3.1.1陽極氧化鋁遮罩製作 33 3.1.2 ICP-RIE製程 35 3.1.3凹槽型奈米圖案形貌量測 36 3.1.4 UVC-LED光電特性量測 37 3.2實驗設備簡介 40 3.2.1凹槽型奈米圖案基板製程設備 40 3.2.2樣品表面與光電特性量測設備 43 第四章 結果與討論 47 4.1製備大孔徑陽極氧化鋁遮罩 47 4.2 製備大孔徑凹槽型圖案藍寶石基板 51 4.2.1薄藍寶石基板製作凹槽型奈米圖案 51 4.2.2 ICP-RIE製程優化 52 4.3 晶背具凹槽奈米圖案之UVC-LED光電特性研究 59 第五章 結論 65 參考文獻 67

    [1]https://medias.yolegroup.com/uploads/2020/10/YDR20182-UV-LEDs-%E2%80%93-Market-and-Technology-Trends-2020_flyer.pdf.
    [2]https://s3.i-micronews.com/uploads/2020/07/YDR20104-Status-of-the-MEMS-Industry-2020-Flyer.pdf.
    [3]https://medias.yolegroup.com/uploads/2020/10/PR20183-UV-C-LEDS-at-the-time-of-Covid-19_sample.pdf.
    [4] Ong, Q., et al., Irradiation of UVC LED at 277 nm inactivates coronaviruses in association to photodegradation of spike protein. Heliyon, 2022. 8(10): p. e11132.
    [5]https://www.photonics.com/Articles/Ultraviolet_Communications_Framework_Will_Help/a66050
    [6] https://www.uvfab.com/uv-spectrum-and-applications/.
    [7] Schubert, E.F. and J.K. Kim, Solid-State Light Sources Getting Smart. Science, 2005. 308(5726): p. 1274-1278.
    [8] Park, J.-S., et al., Review—Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency. ECS Journal of Solid State Science and Technology, 2017. 6(4): p. Q42.
    [9] https://en.wikipedia.org/wiki/Stepper.
    [10] Okazaki, S., Resolution limits of optical lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991. 9(6): p. 2829-2833.
    [11] and, Y.X. and G.M. Whitesides, SOFT LITHOGRAPHY. Annual Review of Materials Science, 1998. 28(1): p. 153-184.
    [12] C. Thibault, I.d.B.p.L.D., AppLications pour les Biopuces, de L'échelle Micrométrique á Nanométrique, Univeristé de TOULOUSE, 2007.
    [13] http://www.chem.hanyang.ac .kr:8001/hanyang/professor6/upload/Lhito.pdf
    [14] Gates, B.D., et al., New approaches to nanofabrication: molding, printing, and other techniques. Chemical reviews, 2005. 105(4): p. 1171-1196.
    [15] Rothemund, P.W., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440(7082): p. 297-302.
    [16] Garcia, R., R.V. Martinez, and J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chemical Society Reviews, 2006. 35(1): p. 29-38.
    [17] Martinez-Gil, A., Nanostructuration de surfaces de silicium pour guider la croissance auto-organisée de nanostructures métalliques. 2005, Université Paris Sud-Paris XI.
    [18] Zhang, G. and D. Wang, Colloidal lithography—the art of nanochemical patterning. Chemistry–An Asian Journal, 2009. 4(2): p. 236-245.
    [19] Fischer, U.C. and H.P. Zingsheim, Submicroscopic pattern replication with visible light. Journal of Vacuum Science and Technology, 1981. 19(4): p. 881-885.
    [20] Deckman, H. and J. Dunsmuir, Natural lithography. Applied Physics Letters, 1982. 41(4): p. 377-379.
    [21] Hulteen, J.C. and R.P. Van Duyne, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995. 13(3): p. 1553-1558.
    [22] Zhang, G. and D. Wang, Colloidal lithography—the art of nanochemical patterning. Chemistry–An Asian Journal, 2009. 4(2): p. 236-245.
    [23] Li, L., et al., Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. Journal of Materials Chemistry, 2011. 21(1): p. 40-56.
    [24] Li, Y., N. Koshizaki, and W. Cai, Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coordination Chemistry Reviews, 2011. 255(3-4): p. 357-373.
    [25] Dewalque, J., et al., Microstructural evolution of a TiO2 mesoporous single layer film under calcination: Effect of stabilization and repeated thermal treatments on the film crystallization and surface area. Thin Solid Films, 2012. 520(16): p. 5272-5276.
    [26] Dushkin, C., et al., Effect of growth conditions on the structure of two-dimensional latex crystals: experiment. Colloid and Polymer Science, 1999. 277: p. 914-930.
    [27] Colson, P., R. Cloots, and C. Henrist, Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method? Langmuir, 2011. 27(21): p. 12800-12806.
    [28] Bale, M., A. Turner, and R. Palmer, Fabrication of ordered arrays of silicon nanopillars at selected sites. Journal of Physics D: Applied Physics, 2002. 35(5): p. L11.
    [29] Xia, Y., et al., Template‐assisted self‐assembly of spherical colloids into complex and controllable structures. Advanced Functional Materials, 2003. 13(12): p. 907-918.
    [30] Varghese, B., et al., Size Selective Assembly of Colloidal Particles on a Template by Directed Self-Assembly Technique. Langmuir, 2006. 22(19): p. 8248-8252.
    [31] Yin, Y., et al., Template-Assisted Self-Assembly:  A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical Society, 2001. 123(36): p. 8718-8729.
    [32] Colson, P., C. Henrist, and R. Cloots, Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. Journal of Nanomaterials, 2013. 2013: p. 948510.
    [33] Yang, J., G. Duan, and W. Cai, Controllable Fabrication and Tunable Magnetism of Nickel Nanostructured Ordered Porous Arrays. The Journal of Physical Chemistry C, 2009. 113(10): p. 3973-3977.
    [34] Lee, S.H., et al., Self-Assembled Plasmonic Nanohole Arrays. Langmuir, 2009. 25(23): p. 13685-13693.
    [35] Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 1995. 67: p. 3114.
    [36] Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint Lithography with 25-Nanometer Resolution. Science, 1996. 272(5258): p. 85-87.
    [37] Chou, S.Y., et al., Sub-10 nm imprint lithography and applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 1997. 15(6): p. 2897-2904.
    [38] Austin, M.D., et al., Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004. 84(26): p. 5299-5301.
    [39] Scott, T.F., et al., Photoinduced Plasticity in Cross-Linked Polymers. Science, 2005. 308(5728): p. 1615-1617.
    [40] Li, Z., et al., Hybrid Nanoimprint−Soft Lithography with Sub-15 nm Resolution. Nano Letters, 2009. 9(6): p. 2306-2310.
    [41] Ok, J.G., et al., Photo–Roll Lithography (PRL) for Continuous and Scalable Patterning with Application in Flexible Electronics. Advanced Materials, 2013. 25(45): p. 6554-6561.
    [42] Park, H.J., et al., A Facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance. Advanced Materials, 2010. 22(35): p. E247-E253.
    [43] Ahn, S.H. and L.J. Guo, Dynamic Nanoinscribing for Continuous and Seamless Metal and Polymer Nanogratings. Nano Letters, 2009. 9(12): p. 4392-4397.
    [44] Ahn, S.H., et al., Template-Free Vibrational Indentation Patterning (VIP) of Micro/Nanometer-Scale Grating Structures with Real-Time Pitch and Angle Tunability. Advanced Functional Materials, 2013. 23(37): p. 4739-4744.
    [45] Wang, Z., et al., Programmable, Pattern-Memorizing Polymer Surface. Advanced Materials, 2011. 23(32): p. 3669-3673.

    [46] Heinz, O., et al., Surface-patterning of polymeric membranes: fabrication and performance. Current Opinion in Chemical Engineering, 2018. 20: p. 1-12.
    [47] Chen, X.-Z., et al., Nano-Imprinted Ferroelectric Polymer Nanodot Arrays for High Density Data Storage. Advanced Functional Materials, 2013. 23(24): p. 3124-3129.
    [48] McBride, M.K., et al., Enabling Applications of Covalent Adaptable Networks. Annual Review of Chemical and Biomolecular Engineering, 2019. 10(1): p. 175-198.
    [49] Aryal, M., K. Trivedi, and W. Hu, Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography. ACS Nano, 2009. 3(10): p. 3085-3090.
    [50] Hu, Z. and A.M. Jonas, Control of crystal orientation in soft nanostructures by nanoimprint lithography. Soft Matter, 2010. 6(1): p. 21-28.
    [51] Cox, L.M., et al., Nanoimprint lithography: Emergent materials and methods of actuation. Nano Today, 2020. 31: p. 100838.
    [52] Cox, L.M., et al., Nanoimprint lithography: Emergent materials and methods of actuation. Nano Today, 2020. 31: p. 100838.
    [53] Eessaa, A.K. and A.M. El-Shamy, Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectronic Engineering, 2023. 279: p. 112061.
    [54] Bruera, F.A., et al., Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step. Coatings, 2019. 9(2): p. 115.
    [55] Lan, Y., et al., Fabrication of amorphous Al2O3 optical film with various refractive index and low surface roughness. Materials Research Express, 2020. 7(8): p. 086405.
    [56] O Araoyinbo, A., et al., Room temperature anodization of aluminum and the effect of the electrochemical cell in the formation of porous alumina films from acid and alkaline electrolytes. Advanced Materials Letters, 2012. 3(4): p. 273-278.
    [57] Eessaa, A.K. and A.M. El-Shamy, Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectronic Engineering, 2023. 279: p. 112061.
    [58] Bruera, F.A., et al., Low-cost nanostructured coating of anodic aluminium oxide synthesized in sulphuric acid as electrolyte. Coatings, 2021. 11(3): p. 309.
    [59] Poinern, G.E.J., N. Ali, and D. Fawcett, Progress in nano-engineered anodic aluminum oxide membrane development. Materials, 2011. 4(3): p. 487-526.
    [60] O'sullivan, J., J. Hockey, and G. Wood, Infra-red spectroscopic study of anodic alumina films. Transactions of the Faraday Society, 1969. 65: p. 535-541.
    [61] Wood, G. and J. O'Sullivarv, Electron‐Optical Examination of Sealed Anodic Alumina Films: Surface and Interior Effects. Journal of the Electrochemical Society, 1969. 116(10): p. 1351.
    [62] O'sullivan, J., J. Hockey, and G. Wood, Infra-red spectroscopic study of anodic alumina films. Transactions of the Faraday Society, 1969. 65: p. 535-541.
    [63] Wood, G.C. and J.P. O'Sullivan, The anodizing of aluminium in sulphate solutions. Electrochimica Acta, 1970. 15(12): p. 1865-1876.
    [64] Li, F., L. Zhang, and R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chemistry of Materials, 1998. 10(9): p. 2470-2480.
    [65] Hamrakulov, B., et al., Electrodeposited Ni, Fe, Co and Cu single and multilayer nanowire arrays on anodic aluminum oxide template. Transactions of Nonferrous Metals Society of China, 2009. 19: p. s83-s87.
    [66] Masuda, H., K. Yada, and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Japanese Journal of Applied Physics, 1998. 37(11A): p. L1340.
    [67] Jessensky, O., F. Müller, and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, 1998. 72(10): p. 1173-1175.
    [68] Jessensky, O., F. Müller, and U. Gösele, Self‐Organized Formation of Hexagonal Pore Structures in Anodic Alumina. Journal of The Electrochemical Society, 1998. 145(11): p. 3735.
    [69] Xu, L., et al., Improving the External Quantum Efficiency of High Power GaN Based Flip-Chip LEDs using Ag/SiO2/DBR/SiO2 Composite ReflectiveStructure. 2021.
    [70] Ku, C.-H., W.-K. Wang, and R.-H. Horng, Improvement of light extraction for AlGaN-based near UV LEDs with flip-chip bonding fabricated on grooved sapphire substrate using laser ablation. Materials Science in Semiconductor Processing, 2019. 95: p. 48-53.
    [71] Kim, K., H. Ju, and J. Kim, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Composites Science and Technology, 2015. 123.
    [72] Choi, W.J., E.C.C. Yeh, and K.N. Tu, Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization. Journal of Applied Physics, 2003. 94(9): p. 5665-5671.
    [73] Sharma, B., et al., Design and Analysis of Thin Micro-Mechanical Suspended Dielectric RF-MEMS Switch for 5G and IoT Applications. 2021. p. 133-146.
    [74] Ge, D., et al., Improvement of light extraction efficiency in GaN-based light-emitting diodes by addition of complex photonic crystal structure. Materials Research Express, 2019. 6(8): p. 086201.
    [75] Meng, L., et al., Enhancing light extraction efficiency of GaN-based light-emitting diodes with reticulated photonic crystals. Journal of Nanophotonics, 2023. 17(1): p. 016005.

    [76] Meng, L., et al., Enhancing light extraction efficiency of GaN-based light-emitting diodes with reticulated photonic crystals. Journal of Nanophotonics, 2023. 17(1): p. 016005.
    [77] Zhmakin, A.I., Enhancement of light extraction from light emitting diodes. Physics Reports, 2011. 498(4): p. 189-241
    [78] Wang, H., et al., Role of surface microstructure and shape on light extraction efficiency enhancement of GaN micro-LEDs: A numerical simulation study. Displays, 2022. 73: p. 102172.
    [79] Piprek, J. Efficiency Models for GaN-Based Light-Emitting Diodes: Status and Challenges. Materials, 2020. 13, DOI: 10.3390/ma13225174.
    [80] Wang, H., et al., Role of surface microstructure and shape on light extraction efficiency enhancement of GaN micro-LEDs: A numerical simulation study. Displays, 2022. 73: p. 102172.
    [81] Huang, Y.-R., et al., Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide. Beilstein Journal of Nanotechnology, 2018. 9: p. 1602-1612.
    [82]Hsu, T.-C., et al., Perspectives on UVC LED: Its Progress and Application. Photonics, 2021. 8(6): p. 196.
    [83] Amano, H., et al., The 2020 UV emitter roadmap. Journal of Physics D: Applied Physics, 2020. 53(50): p. 503001.
    [84] Kneissl, M., et al., The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nature Photonics, 2019. 13(4): p. 233-244.
    [85] Zhang, L., et al., Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array. Photonics Research, 2019. 7(9): p. B66-B72.

    [86] Kang, C.-Y., et al., A Novel Liquid Packaging Structure of Deep-Ultraviolet Light-Emitting Diodes to Enhance the Light-Extraction Efficiency. Crystals, 2019. 9(4): p. 203.
    [87] Ye, Z.T., et al., Nanoparticle-Doped Polydimethylsiloxane Fluid Enhances the Optical Performance of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes. Nanoscale Research Letters, 2019. 14(1): p. 236.
    [88]https://nanofc.web.nycu.edu.tw/%E9%9B%99%E9%9B%BB%E5%AD%90%E6%A7%8D%E8%92%B8%E9%8D%8D%E7%B3%BB%E7%B5%B1-b-dual-e-gun-evaporation-system-b/
    [89]https://nanofc.web.nycu.edu.tw/%E7%86%B1%E9%98%BB%E7%B5%B2%E8%92%B8%E9%8D%8D%E7%B3%BB%E7%B5%B1-thermal-evaporation-coater/
    [90] https://mse.ntust.edu.tw/var/file/19/1019/img/1921/728888481.pdf
    [91] https://sppic.ntust.edu.tw/p/406-1058-99842,r1589.php?Lang=zh-tw

    無法下載圖示
    全文公開日期 2026/02/01 (校外網路)
    全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE