簡易檢索 / 詳目顯示

研究生: 陳映妘
Ying-Yun Chen
論文名稱: 耐震消能型連接板鋼橋柱之細部設計與應用
Detail Design and Application of Energy Dissipating Plate on Steel Bridge Columns for Seismic Resistance
指導教授: 陳生金
Sheng-Jin Chen
口試委員: 廖國偉
Kuo-Wei Liao
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 預選塑性區消能連接板鋼結構橋柱有限元素法
外文關鍵詞: Pre-selected zone, Energy dissipating plate, Steel bridge column, Finite element method
相關次數: 點閱:220下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現行之傳統型連接板接合鋼橋柱於地震力作用下非彈性變形通常發生在柱底,造成震後檢測及維修之困難,本文將介紹一創新之鋼橋柱設計,利用預選塑性區之概念,使非彈性變形集中於預先選定之區域,震後工程師將針對預選塑性區域進行檢測,以確定是否有破壞發生。
    由同一系列之研究結果顯示,鋼橋柱底之破壞可以透過此設計方法,成功將非線性變形轉移至預選塑性區之位置,最後對於先前之研究結果做歸納與比較,並推導出更完善之設計方法與流程,並加以應用在不同形式之鋼橋橋墩上。


    It is generally recognized that the inelastic deformation of steel bridge column usually emerges at the bottom of the column under seismic load. This usually caused the difficulty in inspecting and repairing the damage after earthquake. In this study, a new type of steel bridge column is proposed which is based on the concept of pre-selected plastic zone. In this design method, the inelastic deformation on the pre-selected zone. After the earthquake, the engineer is able to inspect the pre-selected zone to make sure whether there is carry damages occurred.
    In previous studies, the new type of steel bridge column design has successfully controlled the plastic deformation to the pre-selected position with this arrangement, the energy is dissipated to the pre-selected energy-dissipating plate. After arranging and comparing the results of studies, it will be a detail design method and suggestions of energy dissipating plate on steel bridge columns.

    壹、 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 預期成果與後續研究 4 貳、 文獻回顧 5 2.1 概訴 5 2.2 國內外鋼橋柱耐震相關研究 6 2.3 預選塑性區設計概念 10 2.4 具連接板接合之鋼橋柱研究 12 參、 鋼橋柱具連接板接合設計 15 3.1 鋼橋柱受地震力之行為 15 3.2 鋼橋柱消能連接板之力學行為 16 3.3 鋼橋柱具消能連接板設計流程 18 3.3.1 鋼橋柱強度設計 18 3.3.2 彎矩梯度與連接板消能區設計 23 3.3.3 傳力螺栓設計 28 肆、 鋼橋柱有限元素分析 29 4.1 有限元素軟體介紹 29 4.2 橋柱模型設計流程 30 4.3 分析模型與程序建立 32 4.3.1 橋柱模型建立 32 4.3.2 分析程序建立 33 4.4 基本假設與材料性質 34 4.4.1 基本假設 34 4.4.2 材料性質 34 4.5 行為指標 35 4.5.1 Von-Mises等值應力 35 4.5.2 等值塑性應變(PEEQ) 36 4.6 行鋼橋柱有限分析行為 36 伍、 結論與建議 43 5.1 結論 43 5.2 建議 45 陸、 參考文獻 46

    1. Bruneau, M., Performance of steel bridges during the 1995 Hyogoken–Nanbu (Kobe, Japan) earthquake—a North American perspective. Engineering Structures, 1998. 20(12): p. 1063-1078.
    2. Usami, T. and Y. Fukumoto, Local and overall buckling of welded box columns. Journal of the Structural Division, 1982. 108(3): p. 525-542.
    3. Usami, T. and Y. Fukumoto, Deformation analysis of locally buckled steel compression members. Journal of Constructional Steel Research, 1989. 13(2): p. 111-135.
    4. Susantha, K., H. Ge, and T. Usami, Cyclic analysis and capacity prediction of concrete‐filled steel box columns. Earthquake engineering & structural dynamics, 2002. 31(2): p. 195-216.
    5. MacRae, G.A. and K. Kawashima, Seismic behavior of hollow stiffened steel bridge columns. Journal of Bridge Engineering, 2001. 6(2): p. 110-119.
    6. Aoki, T. and K. Susantha, Seismic performance of rectangular-shaped steel piers under cyclic loading. Journal of structural engineering, 2005. 131(2): p. 240-249.
    7. Rasmussen, K. and G. Hancock, Tests of high strength steel columns. Journal of Constructional Steel Research, 1995. 34(1): p. 27-52.
    8. Usami, T. and H. Ge, Cyclic behavior of thin-walled steel structures—numerical analysis. Thin-walled structures, 1998. 32(1): p. 41-80.
    9. McMullin, K.M. and A. Astaneh-Asl, Steel semirigid column-tree moment resisting frame seismic behavior. Journal of Structural Engineering, 2003. 129(9): p. 1243-1249.
    10. AASHTO. LRFD Bridge Design Specifications,“American Association of State Highway and Transportation Officials,”; 2010
    11. Fukumoto Y, Takaku T, Aoki T, Susantha KAS,“Innovative Use of Profiled Steel Plates for Seismic Structural Performance,”Advances in Structural Engineering 2005; 8(3): 247-257
    12. Japan Road Association,“Specifications for Highway Bridges,”Part Ⅱ: Steel bridges, Tokyo(1996a)
    13. Japan Road Association,“Specifications for Highway Bridges,”Part Ⅴ: Seismic design, Tokyo(1996b).
    14. Timoshenko, S.P., and Gere, J.M., Theory of Elastic Stablilty, 2nd ed., McGraw-Hill, New York(1961).
    15. Takaku T., Fukumoto Y., Aoki T., Susantha KAS.,“Seismic Design of Bridge Piers with Stiffened Box Sections using LP Plates,”13th World Conference on Earthquake Engineering 2004; Paper No. 3224, Vancouver, B. C., Canada.
    16. Usami T.,“A Simplified Analysis of the Strength of Stiffened Box Members inCompression and Bending,”Journal of Constructional Steel Research 1990; 17(3): 237-247.
    17. Uenoya M., Nakamura M., Fukumoto Y., and Yamamoto S.,“An experimental study on the elastic-plastic hysteretic of tapered column,”Journal of Structural Engineering, JSCE, Vol. 9, No.33, 25-35 (2002).
    18. Yamamoto R., Aoki T., Kumano T., TuKamoto Y,“Experimental Study (2) on Seismic Performance of Steel Piers with LP plates (Stiffeners and Tapering Ratio),”Proceeding of the Annuals of JSCE, 2003;No.58 (in Japanese).
    19. 陳生金、林南交「鋼結構工程中心頂尖研究計畫,具連接板接合鋼橋柱系列研究-具改良型連接板接合鋼橋柱耐震行為」,2014。
    20. 陳生金、陳傑. (2008). 加勁材對鋼橋柱耐震行為之影響. 中國土木水利工程學刊, 20(3), 273-282.
    21. 陳傑,「預選塑性區鋼橋柱耐震行為之研究」,國立台灣科技大學營建工程系研究所博士論文,2008。
    22. 林宜蕙,「消能連接板耐震行為之研究」,國立台灣科技大學營建工程系研究所碩士論文,2013。
    23. 吳昱豪,「消能板應用於梁柱接頭耐震行為之研究」,國立台灣科技大學營建工程系研究所碩士論文,2014。
    24. 林靜如,「預選塑性區鋼橋柱細部設計研究」,國立台灣科技大學營建工程系研究所碩士論文,2015。
    25. 柯承頤,「預選塑性區橋柱於反覆載重及地震力下之行為」,國立台灣科技大學營建工程系研究所碩士論文,2015。
    26. 「鋼橋柱極限設計法規範及解說草案之研究」,交通部, 2004。
    27. 陳生金,「鋼結構行為與設計」,科技圖書,2009。

    QR CODE