簡易檢索 / 詳目顯示

研究生: 閻建佑
Yen-Ching Yu
論文名稱: 應用於幫浦結構之對稱壓電雙層圓盤以同反相驅動的固液耦合振動特性分析與流率量測
In-Phase and Anti-Phase Motions for Solid-Liquid Coupled Vibration Characteristics of Double Symmetric Two-Layered Piezoelectric Disks and Flow-rate Measurement in Pumping Application
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 許清閔
Ching-Min Hsu
陳永裕
Yung-Yu Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 185
中文關鍵詞: 壓電幫浦壓電雙層圓盤固液耦合振動特性電子斑點干涉術雷射都卜勒振動(LDV)PVDF薄膜感測器有限元素法共振頻率振動模態流量
外文關鍵詞: piezoelectric pump, piezoelectric disk, solid-liquid coupling vibration characteristics, resonance frequency, mode shape, flow rate
相關次數: 點閱:270下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討壓電材料於有限空間的腔體中振動並與液體相互耦合之振動特性的影響,應用於壓電式幫浦同反相與不同模態振形作動進而推動液體產生流量,透過多種實驗量測及數值計算的研究方法得知壓電材料於不同流體時的共振頻率及共振模態。研究主要探討壓電雙層圓盤在與空氣、水和甘油耦合作動下影響的振動特性,並設計兩種不同型式的壓電幫浦進行比較,其一設計是利用串聯型壓電雙層圓盤並結合PDMS高分子薄膜形成類似自由邊界的形式,在共振頻率下驅動而產生位移進而改變腔體體積,使液體因腔體的體積變化而增加流體的流量;另一設計則是利用並聯式壓電雙層圓盤於固定邊界下直接與流體接觸之壓電幫浦。本研究之壓電元件與液體耦合的振動特性使用三種量測設備進行實驗量測,包括垂直式的全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI),對壓電材料於流體中的振動狀態進行即時量測,紀錄壓電材料與不同流體時耦合作用下的共振頻率與振動模態,雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)以單點量測壓電材料與流體耦合的面外振動位移,並可使用穩態掃頻的方式獲得壓電幫浦於固液耦合的面外共振頻率,阻抗分析儀則針對壓電材料的電性進行量測,主要獲得面內耦合面外振動的共振頻率與反共振頻率。另外,本研究再使用聚偏二氟乙烯(PVDF)壓電薄膜感測器實際量測上下結構中的兩壓電圓盤運作時的相位,為了振形可對稱對齊產生推擠效果。本研究可對壓電雙層圓盤耦合不同流體的振動特性進行量測,所有的實驗量測結果皆與固液耦合的有限元素數值計算進行分析比較,無論在共振頻率或振動模態皆可相互對應,對於壓電材料的動態特性於實驗量測與數值分析皆進行比較,成功獲得壓電元件於流體上與流體內的振動特性,準確獲得其共振頻率與振動模態。本研究將得到的振動特性結果應用於兩種不同的壓電幫浦中,分別在不同流體於空氣、水與甘油作用分析共振頻率與探討振動模態對於壓電幫浦流量的影響,並且進行開放式流道系統之流速探討,對於不同的壓電幫浦設計在空氣、水與甘油中的固液耦合共振頻率及振動模態提供完整且豐富的資訊。


    This study investigated the vibration characteristics of two-layered piezoelectric disks with regard to the solid-liquid coupling effect in pump devices. Experimental measurements and finite element numerical calculations were used to determine the resonant frequencies and mode shapes of two piezoelectric disks, which could be used to promote the flow of air, water, and glycerin in in-phase and anti-phase motions. Two piezoelectric pumps were designed to verify the solid-liquid coupled vibrations of the two-layered piezoelectric disks using on pumps with piezoelectric disks located above the surface of the fluid 1) under quasi-free boundary condition and 2) under rim-clamped boundary condition. The first pump has a piezoelectric bimorph bonded to PDMS polymer, such that resonant vibrations produce changes in the volume of the chamber, which increases the flow of fluid. Another is a piezoelectric disk embedded on the rim of pump chamber to promote the flow of liquid by peristaltic motion. Three experimental techniques were used to determine the solid-liquid coupled vibration characteristics. Electric speckle pattern interferometry (ESPI) was used to measure the resonant frequencies and mode shapes associated with the vibration of two-layered piezoelectric disks interacting with fluids. Second, a laser Doppler vibrometer (LDV) was used to obtain the frequency spectrum of vibrating displacement using dynamic signal swept-sine analysis. The third experiment involved analyzing impedance in the piezoelectric bimorphs in order to identify the resonant frequencies and anti-resonant frequencies of the piezoelectric material under the influence of a fluid. Finite element method (FEM) was used for the analysis of vibration characteristics associated with the interaction between the fluids and piezoelectric-solid elements with acoustic elements. All experimental results are compared with the solid-liquid coupled vibration characteristics calculated using FEM. Finally, the two types of piezoelectric pumps were operated at resonant frequencies in order to measure the flow rate from input water. Finite element numerical calculations of resonant frequencies and mode shapes presented good agreement with experimental measurements.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 符號引所 XV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 5 1.3內容介紹 11 第二章 壓電與聲學耦合基本理論與實驗儀器介紹 14 2.1壓電基本理論 14 2.2壓電材料常數 17 2.3聲學耦合轉換 19 2.4電子斑點干涉術 22 2.4.1 面外振動量測 23 2.5 雷射都卜勒振動儀(Laser Doppler Vibrometer , LDV ) 30 2.6阻抗分析儀 33 2.7 聚偏二氟乙烯(PVDF)壓電薄膜感測器 39 第三章 壓電幫浦設計與製作程序 42 3.1壓電無閥式幫浦設計概念 42 3.1.1 結合PDMS薄膜無閥式壓電幫浦(Pump A) 45 3.1.2 直接接觸式無閥式壓電幫浦(Pump B) 45 3.2 壓電無閥式幫浦製作過程 49 3.2.1 製作結合PDMS薄膜無閥式壓電幫浦(Pump A) 51 3.2.2製作直接接觸流體無閥式壓電幫浦(Pump B) 52 3.3討論 64 第四章 壓電元件之固液聲場耦合振動分析及實驗量測 65 4.1 壓電陶瓷雙晶片介紹及理論 65 4.2固液聲場耦合振動分析實驗方法及量測步驟 72 4.3固液耦合振動特性數值分析 75 4.3.1 PDMS薄膜無閥式壓電幫浦(Pump A) 76 4.3.2直接接觸式無閥壓電幫浦(Pump B) 78 4.4固液耦合數值分析壓電雙層圓盤相位差異與壓電雙層圓盤相位實際測量方法 87 4.4.1壓電雙層圓盤相位判斷的實際測量方法 87 4.5固液聲場耦合振動特性實驗量測與數值計算結果比較 92 4.5.1 結合PDMS薄膜無閥式壓電幫浦(Pump A)分析結果 92 4.5.2直接接觸式無閥壓電幫浦(Pump B)分析結果 110 4.6討論 136 第五章 壓電幫浦流率及流速實驗方式及量測結果 150 5.1 PDMS薄膜無閥式壓電幫浦(Pump A)流率及流速實驗方式與量測結果 150 5.1.1 Pump A流率及流速實驗方式 150 5.1.2 Pump A流率及流速量測結果 152 5.2 直接接觸式無閥壓電幫浦(Pump B)流率及流速實驗方式與量測結果 160 5.2.1 Pump B流率及流速實驗方式 160 5.2.2 Pump B流率及流速量測結果 161 5.3 腔體壓力場數值分析 168 5.4 討論 174 第六章 結論與未來展望 175 6.1 結論 175 6.2 未來展望 176 參考文獻 182

    [1] Liua G.J., Shen C.l., Yang Z.G., Cai Xin., Zhang H.Ha., “A disposable piezoelectric micropump with high performance for closed-loopinsulin therapy system”, Sensors and Actuators, A(163), pp.291–296, 2010.
    [2] Tiersten H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
    [3] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [4] Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
    [5] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
    [6] Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology”, Optics and Laser Technology, 3(1), pp. 26-30, 1971.
    [7] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry”, Applied Optics, 16(7), pp. 1869-1875, 1977.
    [8] Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements”, Optical Engineering, 21, pp.400-406, 1982.
    [9] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry”, Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
    [10] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods”, Applied Optics, Vol. 35, No. 22, pp.4502-4509, 1996.
    [11] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies”, Experimental Mechanics, 41(1), pp.8-18, 2001.
    [12] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method”, Experimental Mechanics, 42(2), pp.140-146, 2002.
    [13] Ma C.C. and Lin Y.C., “Resonant vibration of piezoceramic plates in fluid”, Interaction and Multiscale Mechanics, 1(2), pp.177-190, 2008.
    [14] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate”, Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.
    [15] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
    [16] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
    [17] Luo Y., Yin X., Wang X., Zhang Z., “Study of Polymeric MEMS Micro-pump Actuated by PZT Bimorph”, IEEE, pp225-228, April 2013.
    [18] 沈弘俊,李青峻,許家睿,吳咨亨,” 無閥門微幫浦裝置元件之介紹與其應用”,中華民國97年。
    [19] Wu J., Lu L., “LIQUID-SOLID COUPLED SYSTEM OF MICROPUMP”, Acta Mechanica Solida Sinica, Vol.19, No.1, March, 2006.
    [20] Hou W., Das B., Jiang Y., Quin S., Zheng X.I., Pi X., Yang J., Liu H.G., Zeng J. and Zeng Z.G., “Simulation of the Diaphragm Properties of APZT-based Valveless Micropump”, IEEE Nano/Micro Engineered and Molecular Systems, 2008.
    [21] Ma H.K., Hou B.R., Wu H.Y., Lim C.Y., Gao J.J., Kou M.C., “Development and application of a diaphragm micro-pump with piezoelectric device”, Springer-Verlag, 14, pp.1001-1007, 2008.
    [22] Ma H.K., Chen B.R., Gao J.J., Lim C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36, pp.225-232, 2009.
    [23] Ma H.K., Su H.C., Wu J.Y., “Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber”, Sensors and Actuators, A (171), pp.297–305, 2011.
    [24] De Lima C.R., Vatanabe S.L., CHoi A., Nakasone P.H., Felipe Pires R., Carlos Nelli Silva E., “A biomimetic piezoelectric pump: Computational and experimental Characterization”, Sensors and Actuators, A(152), pp.110–118, 2009.
    [25] Zhou Y. and Amirouche F., “Study of fluid damping effects on resonant frequencyof an electromagnetically actuated valveless micropump”, Springer-Verlag London Limited, pp.1187-1196, 2009.
    [26] 連誼婷,“以壓電驅動無閥門微幫浦之流固耦合分析”,國立中央大學機械工程學系碩士論文,中華民國101年6月。
    [27] Singhal V., Garimella S.V., Murthy J.Y.,” Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps”, pp 226–235, 26 April 2004.
    [28] Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y., “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), pp. 227-239, 2007.
    [29] Huang Y.H., Ma C.C., Chao C.K., “High-Frequency Resonant Characteristics of Triple-Layered Piezoelectric Bimorphs Determined Using Experimental Measurements and Theoretical Analysis”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.59, No. 6, pp.1219-1232, 2012.
    [30] Huang Y.H. and Ma C.C., “Experimental and Numerical Investigations of Vibration Characteristics for Parallel-Type and Series Triple-Layered Piezoelectric Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.56, No. 12, pp.2598-2611, 2009.
    [31] “基本壓電材料學”,池田拓郎著、陳世春譯,復漢出版社出版,中華民國74年7月。
    [32] “壓電力學”,周卓明,全華科技圖書股份有限公司出版,中華民國92年11月。
    [33] Bent A.A., Hagood N.W.,” Piezoelectric Fiber Composites with Interdigitated Electrodes”, Smart Structures and Intelligent, SPIE 1917, 1993, pp.341-352.
    [34] Li S., Chen S., “Analytical analysis of a circular PZT actuator for valveless micropumps”, pp151-161, 19 January 2003.
    [35] F. M. White, “Fluid Mechanics, “ McGraw-Hill, New York , pp.334-336, 345-351 , 1986.
    [36] Tseng L.Y., Yang A.S., Lee C.Y., Cheng C.H.,” Investigation of a piezoelectric valveless micropump with an integrated stainless-steel diffuser/nozzle bulge-piece design”, IOPscience, 12pp, 12 July 2013.
    [37] 侯炫竹,“雙向驅動壓電雙層圓盤應用於不同幫浦結構之固液耦合振動特性與流率之量測”中華民國103年7月
    [38] 李正智,“應用Mindlin板理論解析壓電雙晶圓板耦合問題之動態分析與能量擷取的實驗量測 ”出版1921年

    QR CODE