簡易檢索 / 詳目顯示

研究生: 楊定原
Ding-Yuan Yang
論文名稱: 以三維有限元素法與傳統監測儀器探討光達技術於開挖工程之可行性
Using 3D finite element method and traditional monitoring system to discuss the feasibility of LiDAR technology in excavation engineering
指導教授: 鄧福宸
Fu-Chen Teng
熊彬成
Pin-Cheng Hsiung
口試委員: 鄧福宸
Fu-Chen Teng
熊彬成
Pin-Cheng Hsiung
鄭世豪
Shih-Hao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 163
中文關鍵詞: 有限元素法光達點雲深開挖數值分析土壤位移
外文關鍵詞: Finite element method, LiDAR, Point cloud, Deep excavation, Numerical analysis, Ground movement
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣都會區建築物非常密集,加上地下開挖深度加深,為保障鄰產之安全,開挖安全監測於工程中扮演重要角色。過去,監測單位常使用傾度管、地表沉陷釘以量測因開挖引起之壁體側向變形與地表沉陷,然而,為此不但付出相當多的時間與人力成本,對於開挖引致變形較小之案例,其監測精度更是非常低。由於光達技術之區域性、便利性與高精度,近年來,許多研究人員已將光達技術用於隧道、邊坡與開挖等大地工程中;惟因施工與點雲處理問題,變形分析結果往往只能得到一個較為發散的變形區間,而不能獲得一個具體的變位值,對此,工程人員對於光達技術於大地工程中之可行性不免有些疑慮。考慮前述原因,本研究擬對光達技術於開挖工程之應用進行更深一層之驗證。

    首先,在對點雲進行預處理後,考慮前人於該領域之經驗,本研究以M3C2算法進行點雲變形分析,並以迭代最近點法進行修正。同時,對三軸試驗之應力應變曲線作圖,並使用平鈑載重試驗之數值模型進行反算分析以獲得一組適用於PLAXIS之土壤參數;之後,利用此組土壤參數建立一完整之三維有限元素法模型,再將計算出之數值分析結果、傳統監測儀器收測資料與點雲分析結果進行交互比對,最後,假設傾度管數據為真值,算出點雲結果與數值結果之RMSE,並依照現場掃描經驗給出光達於開挖工程應用時之具體建議。


    In Taiwan's metropolitan areas, buildings are densely concentrated. Coupled with the increased depth of excavation for foundations, ensuring the safety of neighboring properties becomes crucial. Excavation safety monitoring plays a vital role in construction projects for this purpose.

    In the past, monitoring agencies commonly used inclinometers and settlement pins to track the lateral deformation of retaining walls and surface settlement caused by excavation. However, this approach entailed considerable time and manpower costs. Furthermore, when dealing with small displacements caused by excavations, the monitoring accuracy was notably low.

    Due to its regional coverage, convenience, and high precision, LiDAR technology has been increasingly employed by researchers in various geotechnical engineering applications, such as tunnels, slopes, and excavations. However, due to construction problems and point cloud processing challenges, deformation analysis results often yield a broad deformation range instead of a specific displacement value. This limitation has raised concerns among engineers regarding the feasibility of LiDAR technology in geotechnical engineering. Considering these reasons, this study aims to further validate the application of LiDAR technology in excavation projects.
    Firstly, after preprocessing the point cloud data, consider previous experience in the field, this study uses the M3C2 algorithm for point cloud deformation analysis and uses the Iterative Closest Point (ICP) method for subsequent correction. Additionally, stress-strain curves from triaxial tests were plotted to determine the secant modulus, and numerical modeling of plate load tests are employed for back- analysis to obtain soil parameters for PLAXIS.

    Subsequently, a comprehensive three-dimensional finite element model is developed using these soil parameters. The calculated results from the numerical analysis, data collected from traditional monitoring instruments, and point cloud analysis results are then mutually compared and cross-checked. Lastly, based on the comparison results and on-site scanning experience, recommendations are provided for the application of LiDAR technology in excavation projects.

    表目錄 符號索引 第一章 緒論 1.1 研究目的 1.2 研究方法 1.3 論文架構 第二章 文獻回顧 2.1 台灣地區卵礫石分布及生成背景 2.2 擋土結構與支撐型式探討 2.2.1 連續壁工法 2.2.2 H型鋼支撐系統 2.2.3 深開挖引致之壁體變形 2.2.4 深開挖引致之地表沉陷 2.3 雷射掃描原理與應用 2.3.1 雷射掃描原理 2.3.2 點雲之拼接與套合 2.3.3 點雲重新取樣 2.3.4 點雲濾層 2.3.5 點雲柵格化 2.3.6 點雲距離演算法 2.3.7 光達技術於變形監測之應用 2.4 土壤分析模式與組合率 2.4.1 前言 2.4.2 硬化土壤模型(Hardening soil model) 第三章 光達於開挖工程之應用 3.1 工程概況 3.2 土層分布與土壤參數 3.3 監測系統概述 3.4 點雲變形分析 3.4.1 點雲分析軟體 3.4.2 連續壁點雲位移分析 3.4.3 不動點迭代最近點法 3.4.4 以迭代最近點法輔助連續壁點雲位移分析 3.4.5 開挖區橫剖面之連續壁點雲位移 3.4.6 開挖地表點雲位移分析 第四章 三維有限元素法模型 4.1 PLAXIS軟體簡介 4.2 模型基本設定 4.2.1 開挖邊界設定 4.2.3 三維數值模型網格生成 4.2.4 施工階段 4.3 分析之土壤參數 4.3.1 砂/泥岩楊氏模數 4.3.2 卵礫石楊式模數——平鈑載重試驗 4.4 分析之結構參數 4.4.1 版元素(Plate element) 4.4.2 梁元素(Beam element) 4.5 水力條件 4.5.1 Fully coupled-flow deformation analysis 4.5.2 排水管元素(Drainage line element) 4.5.3 三維塑性分析 4.6 數值分析結果 4.6.1 連續壁變形結果 4.6.2 地表沉陷結果 第五章 傾度管、點雲、三維有限元模型比較 5.1 對於壁體變形比較分析 5.2 地表沉陷比較分析 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    Barnhart T.B. and Crosby B.T. (2013). Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens. 5: 2813–2837.

    Besl P. and McKay H. (1992). A method for registration of 3-D shapes. IEEE Transactions on pattern analysis and machine intelligence 14(2), 239–256

    Biot M. A. (1941). General theory of three-dimensional consolidation. J. Appl. Physics 12, No. 2, 155–164.

    Bosché F., Ahmed M., Turkan Y., Haas C. T. and Haas R. (2015). The value of integrating Scan to BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: the case of cylindrical MEP components. Autom Constr 49:201–213.

    Brilakis I., Lourakis M., Sacks R., Savarese S., Christodoulou S., Teizer J. and Makhmalbaf A. (2010). Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv Eng Inform 24:456–465.

    Chang C., Zoback M. D. and Khaksar A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks, Journal of Petroleum Science and Engineering, vol. 51, no. 3, pp. 223–237.

    Collins B. and Sitar N. (2004). Application of high resolution 3d laser scanning to slope stability studies. Proceedings of the 39th Annual Symposium on Engineering Geology and Geotechnical Engineering (Butte, MT), pp. 79– 92.

    Clough G. W. and O’Rourke T. D. (1990), Construction-induced movements of insitu walls, Design and Performance of Earth Retaining Structures, ASCE Special Publication, No. 25, pp.439-470.

    DiFrancesco P. M., Bonneau D. and Hutchinson D. J. (2020). The Implications of M3C2 Projection Diameter on 3D Semi-automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sens. 12, 1885.

    Duncan J.M. and Chang C.Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 96(5): 1629–1653.

    Fjær E., Holt R. M., Horsrud P., Raaen A. M. and Risnes R. (2008). Petroleum Related Rock Mechanics, vol. 53, 2nd edition.

    Fernández. (2012). Comparing time-of-flight and phase-shift. The survey of the royal pantheon in the Basilica of San Isidoro (León), in Proc. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2011, pp. 377–385.

    Hajiaghayi M. Iterative Closest Point. 2017, from
    http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/IterativeAlgs/ICP/al ign.html

    Hsiung B.-C. (2008). A case study on the behaviour of a deep excavation in sand, Journal of Geotechnical Engineering, 36, 665–675.

    Khoiri M., Ou C.-Y., Teng F.-C. (2013). A comprehensive evaluation of strength and modulus parameters of a gravelly cobble deposit for deep excavation analysis. Eng. Geol. 174, 61–72.

    Laefer D., Lennon D. Viability assessment of terrestrial LiDAR for retaining wall monitoring. In Proceedings of the American Society of Civil Engineers, GeoCongress 2008: Geosustainability and Geohazard Mitigation, New Orleans, LA, USA, 9–12 March 2008; pp. 247–254.

    Lague D., Brodu N. and Leroux J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26.

    Lim A., Ou C. Y. and Hsieh P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions.” J. GeoEng. 5 (1): 9–20.

    Mana A.I. and Clough G.W. (1981), Prediction of movement for braced cuts in clay, J. Geotech. Geoenviron. Eng., 107(6), 759- 777.

    Mu L. and Huang M. (2016). Small strain based method for predicting three-dimensional soil displacements induced by braced excavation, Tunn. Undergr. Sp. Technol., 52, 12-22.

    Ou C. Y., Chiou D. C. and Wu T. S. (1996). Three-dimensional finite element analysis of deep excavations , Journal of Geotechnical Engineering, 122, p.337-345.

    OU C. Y. and Shiau B. Y. (1998). Analysis of the corner effect on excavation behaviors. Canadian Geotechnical Journal 35(3), 532 – 540.

    Peck R. B. (1969). Deep Excavation and Tunneling in soft ground , Proceeding of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-Ar Volume, p.225-290.

    PLAXIS (2002). A Finite Element program for soil and rock analysis. User’s Manual. Version 8.2. PLAXIS Inc.

    Schanz T., Vermeer P. A. and Bonnier P. G. (1999). The Hardening Soil model: Formulation and Verification. In: Beyond 2000 in Computational Geotechnics, Brinkgreve (ed). Rotterdam: Balkema. 281-296.

    Seo H. J., Zhao Y. and Wang J. (2019) Monitoring of retaining structures on an open excavation site with 3D laser scanning. In: International conference on smart infrastructure and construction 2019 (ICSIC), Cambridge.

    Seo H. J. (2021). 3D roughness measurement of failure surface in CFA pile samples using three-dimensional laser scanning. Appl Sci 11(6):2713.

    Seo H. J. (2021). Long-term Monitoring of zigzag-shaped concrete panel in retaining structure using laser scanning and analysis of influencing factors. Opt Lasers Eng.

    Xie X. Y., Zhu K. W. (2015). Development of a Three-Dimensional Modeling Method for Monitoring Overall Foundation Pit Deformation Based on Terrestrial Laser Scanning, Applied Mechanics and Materials, 743 866-875.

    Zhao Y., Seo H. and Chen C. (2021). Displacement Mapping of Point Clouds: Application of Retaining Structures Composed of Sheet Piles. J. Civ. Struct. Health Monit. 2021, 11, 915–930

    陳昭旭. (2021). 低成本LiDAR用於隧道3D雷射掃描初探. (碩士), 國立臺灣科技大學, 台北市.

    孫睿宏. (2017). 三維雷射掃描應用於深開挖工程之連續壁變形監測. (碩士), 國立臺灣科技大學, 台北市.

    鄧屬予. (1996). 臺灣卵礫石層的地質背景. 地工技術, 第55期, 5-24.

    鄭清江、游友友、林正陽. (2016). 傾斜觀測管變位型態之判釋及模擬校正試驗之探討. 中華水土保持學報, 第100期, 10-23.

    歐章煜. (2002). 深開挖工程:分析設計理論與實務,科技圖書出版.

    高曼軒. (2018). 桃園地區卵礫石潛盾隧道行為之探討與模擬. (碩士), 國立高雄科技大學, 高雄市.

    何沅俊. (2022). 桃園地區卵礫石深開挖工程之特性研究. (碩士), 國立台灣科技大學, 高雄市.
    臺北市建築工程基礎開挖安全措施管理作業要點 (2006).

    中華民國內政部營建署. (2001). 建築物基礎構造設計規範 (Vol. 台內營字第9085629號).

    建築物基礎開挖工程監測準則(TGS-EXCAVM106). (2017): 中華民國大地工程學會.

    朱英茂. (2016). 傾斜儀的誤差與修正. 大地技師期刊, 第12期, 28-37.

    熊彬成、鄧福宸、楊定原、林澤佑. (2022). 特殊測量技術探討桃園地區卵礫石開挖引致行為之探討與回饋分析. 國家科學及技術委員會補助專題研究計畫報告(編號:NSTC 110-2637-E-992-002).

    無法下載圖示
    全文公開日期 2026/08/29 (校外網路)
    全文公開日期 2026/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE