簡易檢索 / 詳目顯示

研究生: 楊政霖
Cheng-lin Yang
論文名稱: 金屬板材不同側邊寬度帽型引伸成形之分析
Analysis of different side width hat drawing process of sheet metal
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
Tsung-Chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 金屬成形有限元素法引伸成形
外文關鍵詞: Sheet metal forming, FEM simulation, drawing
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之目的在於使用彈塑性增量理論並利用有限元素法,模擬金屬板材側邊不同寬度帽型引伸成形之製程,並採用Prandtl-Reuss塑流法則和von Mises的降伏條件,結合有限變形理論及updated Lagrangian formulation (ULF)的觀念建立一增量型彈塑性大變形三維有限元素分析程式,並應用四邊形四節點退化殼元素(degenerated shell element)所推導之形狀函數耦合入剛性矩陣,組成三維有限元素之分析模式,以及使用廣義 法則處理板材成形時,元素降伏判斷、最大容許應變增量、最大容許旋轉增量、料片與模具間節點之接觸與分離等問題。
    藉由數值模擬,可得到成形製程之變形過程資料,如沖頭負荷與沖頭位移關係、板材厚度分佈、應力與應變分佈等。此外,亦製作一組模具進行實驗,並將實驗結果與數值模擬結果作一比較以驗證有限元素分析程式之可信性。


    The aim of this thesis is to apply an elasto-plastic incremental finite element computer code to simulate the different side width of hat drawing process. A methodology for formulating an elasto-plastic three-dimensional finite element model, which is based on Prandtl-Reuss flow rule and von Mises yield criterion respectively, associated with an updated Lagrangian formulation, is developed to simulate sheet metal forming process. The shape function derived from a four-node quadrilateral degenerated shell element is associated into the stiffness matrix to constitute the finite element model. An extended algorithm is proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material.
    The whole deformation history, such as the distribution of thickness, stress and strain during the forming process was obtained. The experimental results of different side width of hat drawing process were made in comparing with the simulation results. The results of both after compensation were accurate.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 符號索引 VI 圖表索引 XI 第一章 緒論 1 1.1文獻回顧 3 1.2論文目的 5 1.3本論文構成 6 第二章 基本理論 7 2.1基本假設與理論 7 2.2有限變形之應變率 7 2.3有限變形之應力與應力率 8 2.4 有限變形之update Lagrangian formulation 10 2.5材料之彈塑性構成關係式 14 第三章 金屬板材有限元素之公式化 19 3.1 簡介 19 3.2 虛功原理的離散化 21 3.3退化殼元素(Degenerated Shell Element) 23 3.4 不同積分法則推導退化殼元素之剛性矩陣 25 3.5 摩擦處理 27 3.6三維曲度修正方程式 30 3.7除荷之設定 31 3.8 靜態顯函(static explicit) 31 第四章 金屬板材之側邊不同寬度帽型引伸成形分析 36 4.1實驗與材料參數 37 4.2數值模擬分析 38 4.3模擬之邊界條件 39 4.4模擬與實驗之結果討論及比較 40 第五章 結論 78 5.1結論 78 5.2 今後之展望 79 參考文獻 80 作者簡介 84

    1. Y.Yamada,N.Yoshimura, and T.Sakurai, “Plastic Stress Strain Matrix and its Application for the Solution of Elastic-Plastic Problems by the Finite Element Methode,” International Journal of Mechanical Sciences, Vol.10, pp.343-354 (1968).
    2. C. Zienkiewicz, S. Valliappan, and I. P. King, “Elasto-Plastic Solution of Engineering Problems, Initial-Stress, Finite Element Approach,” International Journal of Numerical Methods for Engineering, Vol.1, pp.75-100 (1969).
    3. H. D. Hibbitt, P. V. Marcal, and J. R. Rice, “A Finite Element Formulation for Problems of Large Strain and Large Displacement,” International Journal of Solids and Structures,Vol.6, pp.1069-1086 (1970).
    4. C. H. Lee, and S. Kobayaski, “New Solution to Rigid-Plastic Deformation Problems Using a Matrix Method,” Transactions of the ASME,Journal of Engineering for Industry, pp.865-873(1973).
    5. R. M. McMeeking, and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-Plastic Deformation,” International Journal of Solids and Structures, Vol.11, pp.601-616(1975).
    6. R. Hill, “Some Basic Principles in the Mechanics of Solid Without a Natural Time,” Journal of Mechanical physics and Solids, Vol.7, pp.209-225 (1959).
    7. Y. Hayashi and M. Takagi, “Control of Side Wall Curl in Draw-bending of High Strength Steel Sheets,” Proceeding of Advance Technology of Plasticity, Vol.1, pp.735-740 (1984)
    8. A. Malinouchi, “Finite Element Modeling of Draw-Bending Process of Sheet Metal,” Proceeding of the NUMIFORM’86 Conference, Gothenburg, Vol25-29, August,pp.327-332 (1886).
    9. A. Makinouchi and H. Ogawa and Y. Tozawa, “ Simulation of Sheet Bending Processes by Elastic-Plastic Finite Element Methode,” CIRP, Vol.38, pp.279-282 (1989)
    10. Y. M. Huang and D. K. Leu, “An Elasto-Plastic Finite Analysis of Sheet Metal U-Bending Process,” Journal of Material Pocessing Technology, Vol.48, pp151-157(1995).
    11. J. C. Nagtegal, and N. Rebelo, “On the Development of a General Purpose Finite Element Program for Analysis of Forming Process,” International Journal for Numerical Methode in Engineering, Vol.25, pp.113-131 (1988).
    12. Y. Germain, K. Chung, and R. H. Wagoner, “A Rigid-Viscoplastic Finite Element Program for Sheet Metal Forming Analysis,” International Journal of Mechanical Sciences, Vol.3.1, No.1,pp,1-21(1989).
    13. K. J. Bathe, and A. Chaudhary, “A Solution Method for Planar and Axisymmertic Contact Problems,” International Journal for Numerical Methodes in Engineer, Vol.21, pp.65-88 (1985).
    14. A. Makinouchi, Y. Shirataki, S. D. Liu, and Y. Nagai, “Generalization of Tool-Work Contact Conditions for Elasto-Plastic Analysis of Forming Process,” Advanced Technology of Plasticity, Vol3, pp.1161-1166 (1990).
    15. A. Makinouchi, and M. Kawka, “Process Simulation In Sheet Metal Forming,” International Journal of Materials Processing Technology, Vol.46, pp.301-302 (1994).
    16. J. C. Shu, and C. H. Hung, “Finite Element Analysis and Optimization of Springback Reduction: “Double-Bend”Technique” International Journal Mach. Tools Manufact, Vol.36, No.4, pp.423-434 (1996).
    17. S. W. Lee, and D. Y. Yang, “An Assessment of Numerical Parameter Influrncing Springback in Explicit Finite Element Analysis of Sheet Metal Forming Process,” International Journal of Materials Processing Technology, Vol.80, pp.60-67 (1998).
    18. M. Samuel, “Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals,” International Journal of Materials Processing Technology, Vol.105, pp.382-393 (2000).
    19. S. H. Chang, J. M. Shin, Y. M. heo, and D. G. Seo, “Springback characteristics of the tailor-welded strips in U-bending,” International Journal of Materials Processing Technology, Vol.130,pp14-19 (2002).
    20. J. R. Cho, S. J. Moon, Y. H. Moon, and S. S. Kang, “Finite element investigation on spring-back characteristics in sheet metal U-bending process,” International Journal of Materials Technology, Vol.141, pp.109-116 (2002).
    21. V. H. Darendelier and M. I. Gokler, “Finite element analysis of springback in bending of aluminium sheets,” Materials and Design, Vol.23, pp. 223-229 (2002).
    22. W. L. Xu, C. H. Ma, C. H. Li, and W. J. Feng, “Sensitive factors in springback simulation for sheet metal forming,” International Journal of Materials Processing Technology, Vol.151, pp.217-222 (2004).
    23. B. M. Irons, and O. C. Zienkiewicz, “Analysis of Thick and Thin Shell Structures by Curved Finite Elements,” International Journal for Numerical Methods in Engineering, Vol.2, No.3, pp.419-451 (1970).
    24. T. J. R. Hughes, and W.K. Liu, “Nonlinear Finite Element Analysis of Shells:Part Ι. Three-Dimensional Shells,” Computer Methods in Applied Mechanics and Engineering, Vol.26, No.3, pp.331-362 (1981).
    25. 黃沛然,“板金彎曲加工量與彈回量之研究” 台大機研所碩士論文,台北,(民國75年)。
    26. 趙明德,“有限元素法於U形彎曲製程回彈分析之應用”台大機研所碩士論文,台北,(民國82年)。
    27. 李永洲, “金屬板材U行彎曲彈回現象分析”台科大機研所碩士論文,台北,(民國84年)。
    28. 呂道揆, “金屬板材彎曲成形製程之研究”台科大機研所博士論文,台北,(民國84年)。
    29. 陳聰嘉, “金屬板材V型彎曲成形製程馬鞍現象之研究”台科大機研所博士論文,台北,(民國93年)。

    無法下載圖示 全文公開日期 2009/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE