簡易檢索 / 詳目顯示

研究生: 徐梓斌
Tzu-Pin Hsu
論文名稱: 股骨骨髓內釘動態固定法之生物力學分析
Biomechanical Investigation of the Effects of Dynamization After Interlocking Femoral Nailing
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
Kao-Shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 股骨骨折鎖定式骨髓內釘動態固定法有限元素法
外文關鍵詞: femoral fracture, interlocking nail, dynamization, finite element method
相關次數: 點閱:192下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   骨髓內釘為封閉式的固定法,是目前用來治療股骨骨折的標準方法,相對於骨板開放式的固定法,骨髓內釘可為整體骨折帶來較佳的穩定性,並避免過多的軟組織損傷及感染問題產生。針對股骨骨髓內釘的治療法,許多文獻皆指出優先採用靜態固定法,然而卻可能因骨折間隙過大,導致骨折不癒合的情況發生,因此可考慮使用另一種有效的動態固定法,即移除某一端的鎖定螺絲來減少骨折間隙,幫助骨癒合。然而過去的動態固定法大多依靠醫生在臨床上的經驗判斷,並沒有力學上的證據來證明移除何處的鎖定螺絲為最佳的動態固定法,因此本研究的目的是利用有限元素法,將市售的鎖定式骨髓內釘進行靜態固定法與動態固定法的比較,進而得到最佳的骨髓內釘治療方法。
      本研究使用目前被廣泛接受的股骨模型及市售的鎖定式骨髓內釘,以有限元素分析來評估股骨植入順向性骨髓內釘或逆向性骨髓內釘後,其靜態固定法與移除近端或遠端鎖定螺絲兩種動態固定法的生物力學特性,並探討植入物在五種不同股骨骨幹骨折位置上的情況。判斷其生物力學性能的方法為畸變能準則,主要是觀察植入物的最大應力值及應力集中的位置,以防此植入物的過度變形及損壞;而骨折斷面上的接觸面積和接觸壓力則是用來評估幫助骨癒合的重要因素。
      分析結果顯示動態固定法的應力值均小於靜態固定法,且發現最大von Mises應力會發生在螺絲孔洞及骨髓內釘上靠近骨折處的位置,因此可考慮使用動態固定法來降低整體植入物的應力,避免植入物損壞的風險。而本研究藉由有限元素分析的結果,亦可發現移除離骨折處最遠的鎖定螺絲時,骨折斷面上會有最大的接觸面積發生,與文獻和臨床所使用的方法相同,因此可證實此方法確實為最佳的動態固定法。然而動態固定法雖可幫助骨癒合,但卻存在不穩定和肢骨縮短的可能性,因此建議優先使用靜態固定法,若仍無明顯骨癒合發生時,才考慮改用動態固定法。
      希望藉由本研究所得出的結果,可以幫助骨科醫師了解動態固定法的生物力學特性,並做為在臨床上選擇使用動態固定法的參考依據。


    A closed interlocking nail is the gold standard treatment for femoral shaft fracture. Relative to the plate, interlocking nail has biomechanical superiority because of its better fixation, less soft tissue stripping, and less infection. For the treatment of interlocking nail, the static fixation technique is often selected to treat fractured femurs. However, the static fixation may result in a gap between fracture fragments and fracture nonunion. Immediate or subsequent dynamization of an interlocking nail is regarded as an effective treatment for patients with fracture nonunion. The principle of this technique is to remove a screw or screws to decrease the gap between the interlocked fracture fragments. In addition, the characteristics of dynamic fixation techniques are unclear, and the surgical rule, involving the removal of the locking screws farthest from the fracture site, is based mainly on surgeons’ experiences. The purpose of this study is to investigate the characteristics of the fixation techniques and validity of the surgical rule by finite element method.
    The commercial interlocking nails and the standardized femur model were used in this study. The biomechanical characteristics of conventional static fixation technique and two types of dynamic fixation techniques applied to five types of femoral shaft fractures with an antegrade nail and retrograde nail were compared. To determine the biomechanical characteristics of different fixation techniques, the maximum von Mises stress of the implants, the contact area on the fracture surfaces, and the contact pressure on the fracture surfaces were calculated.
    The results show that the dynamic fixation techniques could significantly reduce the maximum von Mises stress. The maximum von Mises stress occurred at either the nail hole or the nail near the fracture site. Therefore, the dynamic fixation techniques could reduce the stress of the nail and avoid the risk of implant failure. In this study, the numerical results obtained in this study had the same outcomes of clinical applications. It could be found that the dynamic fixation technique by removing the locking screws farthest from the fracture site had the largest contact area at the fracture surface of the femoral fragment. Although the dynamic fixation techniques could improve bone healing rate, but it might cause instability and limb shortening. We suggested that the priority fixation techniques were the static fixation. However, the dynamic fixation technique should be applied when the patients with nonunion occurred.
    The results of this study could help surgeons to understand the biomechanical characteristics of dynamic fixation techniques and provide evidence to support the use of dynamic fixation techniques.

    摘要............................................ I ABSTRACT....................................... II 誌謝............................................ III 目錄............................................ IV 圖目錄........................................... VI 表目錄........................................... IX 第一章 緒論.................................... 1 1.1研究動機與目的................................. 1 1.2股骨的解剖學構造............................... 3 1.3股骨骨幹骨折簡介............................... 7 1.4股骨骨幹骨折之治療方法........................... 8 1.5鎖定式骨髓內釘簡介.............................. 10 1.6文獻回顧...................................... 13 1.7本文架構...................................... 17 第二章 材料與方法............................... 19 2.1有限元素法簡介................................. 19 2.2有限元素模型之建立.............................. 22 2.2.1股骨模型建立................................. 22 2.2.2股骨骨幹骨折模型建立.......................... 23 2.2.3骨折固定器模型建立............................ 25 2.2.4整體模型建立................................. 28 2.3有限元素分析................................... 31 2.3.1材料性質.................................... 31 2.3.2元素及網格設定............................... 32 2.3.3界面接觸條件................................. 36 2.3.4邊界條件.................................... 38 2.4收斂性分析.................................... 39 2.5生物力學性能準則............................... 39 2.5.1破壞理論-畸變能準則........................... 40 2.5.2骨折塊的接觸面積及接觸壓力..................... 41 第三章 結果.................................... 42 3.1收斂性分析結果................................. 42 3.2 von Mises應力結果............................ 51 3.2.1順向性骨髓內釘結果............................ 51 3.2.2逆向性骨髓內釘結果............................ 57 3.3接觸面積與接觸壓力結果........................... 63 3.3.1順向性骨髓內釘結果............................ 63 3.3.2逆向性骨髓內釘結果............................ 70 3.4綜合結果...................................... 76 第四章 討論.................................... 80 第五章 結論與未來展望............................ 84 5.1結論......................................... 84 5.2未來展望...................................... 85 參考文獻......................................... 86 作者簡介......................................... 89

    [1]Raaymakers, E., Schipper, I., Simmermacher, R., and Werken, C. v. d. AO Foundation. Available:. http://www.aofoundation.org/wps/portal/Home.
    [2]Brumback, R. J., Uwagie-Ero, S., Lakatos, R.P., Poka, A., Bathon, G. H., and Burgess, A.R., "Intramedullary nailing of femoral shaft fractures. Part II: Fracture-healing with static interlocking fixation," The Journal of Bone and Joint Surgery, vol. 70, pp. 1453-1462, (1988).
    [3]Esteve-Balzola, C., Garcia-Forcada, I. L., Calbet-Vidal, J. M., Gargantilla-Vazquez, A., and Gine-Goma, J., "Femoral Shaft Fractures Treated by Intramedullary Interlocked Nailing," Revista Espanola de Cirugia Ortopedica y Traumatologia, vol. 51, pp. 335-342, (2007).
    [4]Stott, P. M., and Clark, D. W., "The use of a new screw to aid removal of broken interlocking screws," Injury Extra, vol. 37, pp. 390-392, (2006).
    [5]Shih, K. S., Tseng, C. S., Lee, C. C., and Lin, S. C., "Influence of muscular contractions on the stress analysis of distal femoral interlocking nailing," Clinical Biomechanics, vol. 23, pp. 38-44, (2008).
    [6]Handolin, L., Pajarinen, J., Lindahl, J., and Hirvensalo, E., "Retrograde intramedullary nailing in distal femoral fractures--results in a series of 46 consecutive operations," Injury, vol. 35, pp. 517-522, (2004).
    [7]Widjaja, W., and Hartung, C., "Biomechanical comparison of different fixations of femur-interlocking-nails," Clinical Biomechanics, vol. 16, pp. 702-705, (2001).
    [8]Wu, C. C., and Shih, C. H., "Distal Femoral Nonunion Treated with Interlocking Nailing," The Journal of Trauma, vol. 31, pp. 1659-1662, (1991).
    [9]Acharya, K. N., and Rao, M. R., "Retrograde nailing for distal third femoral shaft fractures: a prospective study," Journal of Orthopaedic Surgery, vol. 14, pp. 253-258, (2006).
    [10]Tigani, D., Fravisini, M., Stagni, C., Pascarella, R., and Boriani, S., "Interlocking nail for femoral shaft fractures: is dynamization always necessary?," International Orthopaedics, vol. 29, pp. 101-107, (2005).
    [11]Wu, C. C., and Chen, W. J., "Healing of 56 segmental femoral shaft fractures after locked nailing: Poor results of dynamization," Acta Orthopaedica Scandinavica, vol. 68, pp. 537-540, (1997).
    [12]Griza, S., Zimmer, C. G., Reguly, A., and Strohaecker, T. R., "A case study of subsequential intramedullary nails failure," Engineering Failure Analysis, vol. 16, pp. 728-732, (2009).
    [13]Bhat A. K., R. S. K., and Bhaskaranand K., "Mechanical failure in intramedullary interlocking nails," Journal of Orthopaedic Surgery, vol. 14, pp. 138-141, (2006).
    [14]Basumallick, M. N., and Bandopadhyay, A., "Effect of dynamization in open interlocking nailing of femoral fractures. A prospective randomized comparative study of 50 cases with a 2-year follow-up," Acta Orthopaedica Belgica, vol. 68, pp. 42-48, (2002).
    [15]Wu, C. C., "Retrograde Dynamic Locked Nailing for Femoral Supracondylar Nonunions After Plating," The Journal of Trauma, vol. 66, pp. 195-199, (2009).
    [16]Ostrum, R. F., DiCicco, J., Lakatos, R., and Poka, A., "Retrograde Intramedullary Nailing of Femoral Diaphyseal Fractures," Journal of Orthopaedic Trauma, vol. 12, pp. 464-468, (1998).
    [17]Starr, A. J., and Bucholz, R. W., "Retrograde nailing of fractures of the femoral shaft," Current Orthopaedics, vol. 13, pp. 237-241, (1999).
    [18]Cheung, G., Zalzal, P., Bhandari, M., Spelt, J. K., and Papini, M., "Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading," Medical Engineering & Physics, vol. 26, pp. 93-108, (2004).
    [19]林晉 , 鎖定式骨髓內釘之基礎科學與臨床應用 , 合計圖書出版社 , 台北 (2004).
    [20]Gerard Malanga, a. J. A. D. http://www.laboratorium.dist.unige.it/~piero/Teaching/Gait/Malanga%20and%20DeLisa%20Clinical%20Observation.htm.
    [21]張曦 , 骨折、脫位防治和食療100法 , 聯廣圖書股份有限公司 , 台北 (1999).
    [22]骨科學-康復網醫源世界. http://big5.39kf.com/cooperate/book/05/36/2006-01-15-165286.shtml.
    [23]王亦璁 , 骨與關節損傷 , 人民衛生出版社 , 北京 (2006).
    [24]Baixauli, F. S., Baixauli, E. J., Sanchez-Alepuz, E., and Baixauli, F. J., "Interlocked Intramedullary Nailing for Treatment of Open Femoral Shaft Fractures," Clinical Orthopaedics and Related Research, vol. 350, pp. 67-73, (1998).
    [25]Chen, S. H., Yu, T. C., Chang, C. H., and Lu, Y. C., "Biomechanical analysis of retrograde intramedullary nail fixation in distal femoral fractures," The Knee, vol. 15, pp. 384-389, (2008).
    [26]Wu, C. C., and Shih, C. H., "Effect of dynamization of a static interlocking nail on fracture healing.," Canadian journal of surgery, vol. 4, pp. 302-306, (1993).
    [27]徐慶琪 , "骨螺絲之結構設計與生物力學分析" , 博士論文 , 機械工程系 , 國立台灣科技大學 (民國 94 年).
    [28]Viceconti, M., Casali, M., Massari, B., Cristofolini, L., Bassini, S., and Toni, A., "The 'Standardized femur program' proposal for a reference geometry to be used for the creation of finite element models of the femur.," Journal of Biomechanics, vol. 29, p. 1241, (1996).
    [29]林炳佑 , "近端股骨骨折固定器之設計改良與力學評估" , 碩士論文 , 機械工程系 , 國立台灣科技大學 (民國 99 年).
    [30]Duda, G. N., Kirchner, Helmut, Wilke, Hans-Joachim, and Claes, Lutz, "A method to determine the 3-D stiffness of fracture fixation devices and its application to predict inter-fragmentary movement," Journal of Biomechanics, vol. 31, pp. 247-252, (1998).
    [31]Matthias Schoen, R. R., Simone Schattner, Thomas Mittlmeier, Lutz Claes, Brigitte Vollmar, and Georg Gradl, "Introduction of a new interlocked intramedullary nailing device for stabilization of critically sized femoral defects in the rat: A combined biomechanical and animal experimental study," Journal of Orthopaedic Research, vol. 26, pp. 184-189, (2008).
    [32]Oh, J. K., Sahu, Dipit , Ahn, Y. H., Lee, S. J., Tsutsumi, Sadami , Hwang, J. H., Jung, D. Y., Stephan M. Perren, and Oh, C. W., "Effect of fracture gap on stability of compression plate fixation: A finite element study," Journal of Orthopaedic Research, vol. 28, pp. 462-467, (2010).
    [33]陳育斌 , "股骨鎖定內釘之有限元素分析與生物力學測試" , 碩士論文 , 機械工程系 , 台灣科技大學 (民國 90年).
    [34]Stolk, J., Verdonschot, N., and Huiskes, R., "Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction," Journal of Biomechanics, vol. 34, pp. 917-926, (2001).
    [35]Simoes, J. A., Vaz, M. A., Blatcher, S., and Taylor, M., "Influence of head constraint and muscle forces on the strain distribution within the intact femur," Medical Engineering & Physics, vol. 22, pp. 453-459, (2000).
    [36]Duda, G. N., Heller, Markus, Albinger, Juergen, Schulz, Olaf, Schneider, Erich, and Claes, Lutz, "Influence of muscle forces on femoral strain distribution," Journal of Biomechanics, vol. 31, pp. 841-846, (1998).
    [37]Wang, C. J., Yettram, A. L., Yao, M. S., and Procter, P., "Finite element analysis of a Gamma nail within a fractured femur," Medical Engineering & Physics, vol. 20, pp. 677-683, (1998).
    [38]Keyak, J. H., and Skinner, H. B., "Three-dimensional finite element modelling of bone: effects of element size," Journal of Biomedical Engineering, vol. 14, pp. 483-489, (1992).

    QR CODE