研究生: |
程羿賱 Yi-Yun Cheng |
---|---|
論文名稱: |
煅燒溫度對類石墨相氮化碳/聚碸混合基質奈米過濾光催化抗污損性能之研究 Investigation of calcination temperature effect on the photocatalytic antifouling properties of g-C3N4/PSF mixed matrix nanofiltration membranes |
指導教授: |
胡蒨傑
Chien-Chieh Hu |
口試委員: |
賴君義
胡蒨傑 鄭智嘉 洪維松 |
學位類別: |
碩士 Master |
系所名稱: |
產學創新學院 - 能源永續科技研究所 Energy & Sustainability Tech |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 光催化 、類石墨相氮化碳 、氮空位 、奈米過濾 、抗污損 |
外文關鍵詞: | photocatalysis, graphitic carbon nitride, nitrogen-deficient, nanofiltration, antifouling |
相關次數: | 點閱:472 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來薄膜奈米過濾(NF)在工業廢水的處理中受到廣泛的應用,這主要是由於其卓越的分離能力和經濟優勢。薄膜奈米過濾在實際操作過程中必須解決薄膜污損(fouling)所造成產能及薄膜壽命降低的問題,無機添加物與高分子結合製作混合基質薄膜是解決奈米過濾薄膜污損常用的方法,因此本研究將利用具有光催化效能的添加物製作混合基質奈米過濾薄膜,探討添加物特性的變化對奈米過濾薄膜分離效能及抗污損的影響,藉此開發使用壽命長的高效能奈米過濾薄膜。
類石墨相氮化碳(g-C3N4)是具有光催化分解有機物能力的二維奈米片材,g-C3N4加入NF薄膜可改變薄膜的分離效能同時分解附著於薄膜的有機污染物抑制污損,g-C3N4製作的煅燒溫度會影響最終產物的特性,因此本研究將改變g-C3N4製作的煅燒溫度以調控其結構及光催化劑的性能,並且製備出能夠藉由光催化方法清除表面污垢的薄膜。研究中不同煅燒溫度製備的g-C3N4混摻入聚碸中,以濕式相轉換法製作多孔的g-C3N4混合基質薄膜,探討煅燒溫度對g-C3N4混合基質薄膜的NF分離效能、污染物光降解效率的影響。
本研究藉由二次煅燒以及快速加溫的方式,合成出具有高結晶度的g-C3N4,隨著煅燒溫度增高g-C3N4粉末顏色由黃轉紅,溫度高於750°C開始產生氮空位,導致了能隙以及電子-電洞重合速率的降低,進而使光催化效率增強。將不同煅燒溫度所製備的g-C3N4摻入PSF薄膜中,由於煅燒溫度越高的g-C3N4聚合程度越高,高溫也導致了顆粒的破壞,增加了表面粗糙度使薄膜表面變得更加的親水,從而提升了薄膜的水滲透率,750°C煅燒g-C3N4所製作薄膜對於剛果紅的阻擋率高達98.5%,並且permeances能夠達到48.91 LMH/bar。g-C3N4混合基質薄膜進行染料廢水的抗污損測試得到60.2%通量回復率,在三次循環測試中對於剛果紅的阻擋率均維持在96%以上,證實了g-C3N4光觸媒應用在薄膜抗污損的潛力。
In recent years, nanofiltration (NF) membranes have been widely applied in industrial wastewater treatment, mainly due to their excellent separation capabilities and economic advantages. In practical operations, nanofiltration (NF) membranes must address the issue of fouling, which leads to reduced productivity and membrane lifespan. A common method to solve nanofiltration membrane fouling is the production of mixed matrix membranes by combining inorganic additives with polymers. Therefore, this study will utilize additives with photocatalytic properties to create mixed matrix nanofiltration membranes. It will investigate the impact of changes in additive characteristics on the separation performance and antifouling properties of nanofiltration membranes, thereby developing high-performance nanofiltration membranes with extended lifespans.
Graphitic carbon nitride (g-C3N4) is a two-dimensional nanosheet with the ability to photodegrade decompose organic matter. Incorporating g-C3N4 into NF membranes can enhance membrane separation performance while decomposing organic pollutants attached to the membrane, thereby inhibiting fouling. The calcination temperature during g-C3N4 production affects the characteristics of the final product. Therefore, this study will adjust the calcination temperature of g-C3N4 to regulate its structure and photocatalytic performance, aiming to develop membranes capable of removing surface contaminants through photocatalytic methods. In the study, g-C3N4 prepared at different calcination temperatures will be blended into polysulfone, and porous g-C3N4 mixed matrix membranes will be fabricated using the wet phase inversion method. The influence of calcination temperature on the NF separation performance and pollutant photodegradation efficiency of g-C3N4 mixed matrix membranes will be investigated.
In this study, g-C3N4 with high crystallinity was synthesized through secondary calcination and rapid heating. As the calcination temperature increased, the color of the g-C3N4 powder changed from yellow to red. At temperatures above 750°C, nitrogen vacancies began to form, leading to a reduction in the band gap and electron-hole recombination rate, thereby enhancing the photocatalytic efficiency. Incorporating g-C3N4 prepared at different calcination temperatures into the polysulfone membranes revealed that higher calcination temperatures led to greater polymerization of g-C3N4. The high temperature also caused particle exfoliation and deformation, increasing surface roughness and making the membrane surface more hydrophilic, thereby enhancing the water permeability of the membrane. Membranes made with g-C3N4 calcined at 750°C achieved a Congo red rejection rate of up to 98.5% and the permeance can achieve 48.91 LMH/bar. The g-C3N4 mixed matrix membrane underwent antifouling tests with dye wastewater, achieving a flux recovery rate of 60.2%. In three cyclic tests, the rejection rate for Congo red remained above 96%, confirming the potential of g-C3N4 photocatalysts in enhancing the antifouling properties of membranes.
[1] A. Abou-Shady, M.S. Siddique, W. Yu, A critical review of recent progress in global water reuse during 2019–2021 and perspectives to overcome future water crisis, Environments, 10(9) (2023) 159. https://doi.org/10.3390/environments10090159
[2] C. Fernández, M.S. Larrechi, M.P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, Trends Anal. Chem., 29(10) (2010) 1202-1211. https://doi.org/10.1016/j.trac.2010.07.011.
[3] P. Moradihamedani, Recent advances in dye removal from wastewater by membrane technology: a review, Polym. Bull., 79(4) (2022) 2603-2631. https://doi.org/10.1007/s00289-021-03603-2.
[4] 賴君義主編, 薄膜科技概論 Introduction to membrane science and technology, 五南書出版有限公司, 2019[民108].
[5] S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: a review of research trends over the past decade, J. Water Process Eng., 32 (2019) 100941. https://doi.org/10.1016/j.jwpe.2019.100941.
[6] A.H. Behroozi, M.R. Ataabadi, Improvement in microfiltration process of oily wastewater: a comprehensive review over two decades, J. Environ. Chem. Eng., 9 (2021) 104981. https://doi.org/10.1016/j.jece.2020.104981.
[7] A. Siddique, A.A. Yaqoob, M.A. Mirza, A. Kanwal, M.N.M. Ibrahim, A. Ahmad, Emerging techniques for treatment of toxic metals from wastewater, San Diego Elsevier, August 27,2022 pp. 341-364.
[8] M.H.D. Othman, M.R. Adam, M.A.B. Pauzan, S.K. Hubadillah, M.A. Rahman, J. Jaafar, Self-standing substrates: materials and applications, Springer Cham, January 02,2020 pp. 119-145.
[9] M. Oliveira, I.C. Leonardo, A.F. Silva, J.G. Crespo, M. Nunes, M.T.B. Crespo, Nanofiltration as an efficient tertiary wastewater treatment: elimination of total bacteria and antibiotic resistance genes from the discharged effluent of a full-scale wastewater treatment plant, Antibiotics, 11(5) (2022) 630. https://doi.org/10.3390/antibiotics11050630.
[10] N.N.R. Ahmad, W.L. Ang, Y.H. Teow, A.W. Mohammad, N. Hilal, Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: a review, J. Water Process Eng., 45 (2022) 102478. https://doi.org/10.1016/j.jwpe.2021.102478.
[11] J. Su, S. Zhang, M.M. Ling, T.-S. Chung, Forward osmosis: an emerging technology for sustainable supply of clean water, Clean Technol. Environ. Policy, 14 (2012) 507-511. https://doi.org/10.1007/s10098-012-0486-1.
[12] Y. Oren, P. Biesheuvel, Theory of ion and water transport in reverse-osmosis membranes, Phys. Rev. Appl., 9(2) (2018) 024034. https://doi.org/10.1103/PhysRevApplied.9.024034.
[13] M. Jiang, Z. Fang, Z. Liu, X. Huang, H. Wei, C.-Y. Yu, Application of membrane distillation for purification of radioactive liquid, Cleaner Eng. Technol., 12 (2023) 100589. https://doi.org/10.1016/j.clet.2022.100589.
[14] M.M.A. Shirazi, L.F. Dumée, Membrane distillation for sustainable wastewater treatment, J. Water Process Eng., 47 (2022) 102670. https://doi.org/10.1016/j.jwpe.2022.102670.
[15] K.S. Lakshmy, D. Lal, A. Nair, A. Babu, H. Das, N. Govind, M. Dmitrenko, A. Kuzminova, A. Korniak, A. Penkova, Pervaporation as a successful tool in the treatment of industrial liquid mixtures, Polymers, 14(8) (2022) 1604. https://doi.org/10.3390/polym14081604.
[16] X. Feng, R.Y. Huang, Liquid separation by membrane pervaporation: a review, Ind. Eng. Chem., 36(4) (1997) 1048-1066. https://doi.org/10.1021/ie960189g
[17] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separations, Science, 339(6117) (2013) 303-307. https://doi.org/10.1126/science.1228032
[18] Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng., 25(11) (2017) 1639-1652. https://doi.org/10.1016/j.cjche.2017.04.014.
[19] W. Shi, C. Xu, J. Cai, S. Wu, Advancements in material selection and application research for mixed matrix membranes in water treatment, J. Environ. Chem. Eng., 11(6) (2023) 111292. https://doi.org/10.1016/j.jece.2023.111292.
[20] S. Bandehali, F. Parvizian, H. Ruan, A. Moghadassi, J. Shen, A. Figoli, A.S. Adeleye, N. Hilal, T. Matsuura, E. Drioli, S.M. Hosseini, A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water, J. Ind. Eng. Chem., 101 (2021) 78-125. https://doi.org/10.1016/j.jiec.2021.06.022.
[21] R. Kishor, D. Purchase, L. Ferreira, S. Mulla, M. Bilal, R. Bharagava, Handbook of environmental materials management, Springer Cham, June 03,2024 pp 1-24.
[22] N. Karić, A.S. Maia, A. Teodorović, N. Atanasova, G. Langergraber, G. Crini, A.R. Ribeiro, M. Đolić, Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment, Chem. Eng. J. Adv., 9 (2022) 100239. https://doi.org/10.1016/j.ceja.2021.100239.
[23] H.A. Alalwan, M.A. Kadhom, A.H. Alminshid, Removal of heavy metals from wastewater using agricultural byproducts, J. Water Supply Res. Technol., 69(2) (2020) 99-112. https://doi.org/10.1016/j.hbrcj.2013.08.004.
[24] A. Othmani, S. Magdouli, P. Senthil Kumar, A. Kapoor, P.V. Chellam, Ö. Gökkuş, Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: a review, Environ. Res., 204 (2022) 111916. https://doi.org/10.1016/j.envres.2021.111916.
[25] A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276-291. https://doi.org/10.1016/j.chemosphere.2016.01.043.
[26] P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced removal of nitrate from water using surface modification of adsorbents–a review, J. Environ. Manage., 131 (2013) 363-374. https://doi.org/10.1016/j.jenvman.2013.09.034.
[27] F. El-Gohary, A. Tawfik, Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process, Desalination, 249(3) (2009) 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010.
[28] R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf., 231 (2022) 113160. https://doi.org/10.1016/j.ecoenv.2021.113160.
[29] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38(1) (2009) 253-278. https://doi.org/10.1039/B800489G.
[30] R.-t. Guo, J. Wang, Z.-x. Bi, X. Chen, X. Hu, W.-g. Pan, Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation, Chemosphere, 295 (2022) 133834. https://doi.org/10.1016/j.chemosphere.2022.133834.
[31] X. Zhang, P. Yang, g‐C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction, ChemNanoMat, 9(6) (2023) e202300041. https://doi.org/10.1002/cnma.202300041.
[32] Z. Tong, Y. Hai, B. Wang, F. Lv, Z. Zhong, R. Xiong, Activated g-C3N4 photocatalyst with defect engineering for efficient reduction of CO2 in water, The J. Phys. Chem. C, 127(23) (2023) 11067-11075. https://doi.org/10.1021/acs.jpcc.3c02076.
[33] Y. Fan, H. Chen, D. Cui, Z. Fan, C. Xue, NiCo2O4/g‐C3N4 Heterojunction photocatalyst for efficient H2 generation, Energy Technol., 9(5) (2021) 2000973. https://doi.org/10.1002/ente.202000973.
[34] A. Zada, M. Khan, Z. Hussain, M.I.A. Shah, M. Ateeq, M. Ullah, N. Ali, S. Shaheen, H. Yasmeen, S.N. Ali Shah, Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction, Z. Phys. Chem., 236(1) (2022) 53-66. https://doi.org/10.1515/zpch-2020-1778.
[35] Z. You, C. Wu, Q. Shen, Y. Yu, H. Chen, Y. Su, H. Wang, C. Wu, F. Zhang, H. Yang, A novel efficient g-C3N4@ BiOI p–n heterojunction photocatalyst constructed through the assembly of g-C3N4 nanoparticles, Dalton Trans., 47(21) (2018) 7353-7361. https://doi.org/10.1039/C8DT01322E.
[36] J. Lei, Y. Chen, L. Wang, Y. Liu, J. Zhang, Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7, J. Mater. Sci., 50 (2015) 3467-3476. https://doi.org/10.1007/s10853-015-8906-3.
[37] Y. Li, M. Gu, X. Zhang, J. Fan, K. Lv, S.A.C. Carabineiro, F. Dong, 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges, Mater. Today, 41 (2020) 270-303. https://doi.org/10.1016/j.mattod.2020.09.004.
[38] Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, Y. Zheng, X. Tang, M. Zhang, Z. Peng, R. Li, Y. Huang, Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property, Appl. Catal. B, 266 (2020) 118624. https://doi.org/10.1016/j.apcatb.2020.118624 .
[39] J. Yan, X. Han, X. Zheng, J. Qian, J. Liu, X. Dong, F. Xi, One-step template/chemical blowing route to synthesize flake-like porous carbon nitride photocatalyst, Mater. Res. Bull., 94 (2017) 423-427. https://doi.org/10.1016/j.materresbull.2017.06.022.
[40] Y. Zhang, Z. Huang, C.-L. Dong, J. Shi, C. Cheng, X. Guan, S. Zong, B. Luo, Z. Cheng, D. Wei, Y.-c. Huang, S. Shen, L. Guo, Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution, Chem. Eng. J., 431 (2022) 134101. https://doi.org/10.1016/j.cej.2021.134101.
[41] X. Wu, J. Cheng, X. Li, Y. Li, K. Lv, Enhanced visible photocatalytic oxidation of NO by repeated calcination of g-C3N4, Appl. Surf. Sci., 465 (2019) 1037-1046. https://doi.org/10.1016/j.apsusc.2018.09.165.
[42] M. Wu, J. Zhang, B.-b. He, H.-w. Wang, R. Wang, Y.-s. Gong, In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution, Appl. Catal. B, 241 (2019) 159-166. https://doi.org/10.1016/j.apcatb.2018.09.037.
[43] X. Liang, G. Wang, X. Dong, G. Wang, H. Ma, X. Zhang, Graphitic carbon nitride with carbon vacancies for photocatalytic degradation of bisphenol A, Appl. Nano Mater., 2(1) (2019) 517-524. https://doi.org/10.1021/acsanm.8b02089.
[44] H. Sun, F. Guo, J. Pan, W. Huang, K. Wang, W. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J., 406 (2021) 126844. https://doi.org/10.1016/j.cej.2020.126844.
[45] R. Marschall, L. Wang, Non-metal doping of transition metal oxides for visible-light photocatalysis, Catal. Today, 225 (2014) 111-135. https://doi.org/10.1016/j.cattod.2013.10.088
[46] F. Hou, Y. Li, Y. Gao, S. Hu, B. Wu, H. Bao, H. Wang, B. Jiang, Non-metal boron modified carbon nitride tube with enhanced visible light-driven photocatalytic performance, Mater. Res. Bull., 110 (2019) 18-23. https://doi.org/10.1016/j.materresbull.2018.10.009.
[47] W. Guo, J. Li, Y. Yang, M. Zhang, Y. Zhai, D. Li, H. Zhao, Y. Liu, Oxygen-doped carbon nitride/red phosphorus composite photocatalysts for effective visible-light-driven purification of wastewater, Mater. Chem. Phys., 264 (2021) 124440. https://doi.org/10.1016/j.matchemphys.2021.124440.
[48] R. Marschall, H. Tüysüz, C. K. Chan, Solar Energy for Fuels, Springer Cham, November 04, 2015 pp 143-172.
[49] L. Zhang, D. Jing, X. She, H. Liu, D. Yang, Y. Lu, J. Li, Z. Zheng, L. Guo, Heterojunctions in g-C3N4/TiO2 (B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity, J. Mater. Chem. A, 7 (2014) 2071-2078. https://doi.org/10.1039/C3TA14047D.
[50] H. Xu, L. Wu, L. Jin, K. Wu, Combination mechanism and enhanced visible-light photocatalytic activity and stability of CdS/g-C3N4 heterojunctions, J. Mater. Sci. Technol., 33(1) (2017) 30-38. https://doi.org/10.1016/j.jmst.2016.04.008.
[51] M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity, Appl. Mater. Interfaces, 5(23) (2013) 12533-12540. https://doi.org/10.1021/am4038307.
[52] S. Azizian, M. Khosravi, Advanced oil spill decontamination techniques, Interface Sci. Technol., 30 (2019) pp. 283-332.
https://doi.org/10.1016/B978-0-12-814178-6.00012-1.
[53] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4, Appl. Surf. Sci., 358 (2015) 278-286. https://doi.org/10.1016/j.apsusc.2015.08.097.
[54] B.-w. Sun, H.-y. Yu, Y.-j. Yang, H.-j. Li, C.-y. Zhai, D.-J. Qian, M. Chen, New complete assignment of X-ray powder diffraction patterns in graphitic carbon nitride using discrete Fourier transform and direct experimental evidence, Phys. Chem. Chem. Phys., 19(38) (2017) 26072-26084. https://doi.org/10.1039/C7CP05242A.
[55] D.R. Paul, R. Sharma, S. Nehra, A. Sharma, Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution, RSC Adv., 9(27) (2019) 15381-15391. https://doi.org/10.1039/C9RA02201E.
[56] Q. Li, S. He, L. Wang, M. Zhao, T. Guo, X. Ma, Z. Meng, A novel Z‐scheme heterojunction g‐C3N4/g‐C3N4/Pr6O11 for efficient visible‐light photocatalytic degradation of sulfonamide, Appl. Organomet. Chem., 06 (2024) e7344. https://doi.org/10.1002/aoc.7344.
[57] J. Zhang, Y. Zhao, K. Zhang, A. Zada, K. Qi, Sonocatalytic degradation of tetracycline hydrochloride with CoFe2O4/g-C3N4 composite, Ultrason. Sonochem., 94 (2023) 106325. https://doi.org/10.1016/j.ultsonch.2023.106325.
[58] Portillo-Cortez K, Caudillo-Flores U, Sánchez-López P, Smolentseva E, Dominguez D, Fuentes-Moyado S. Photocatalytic activity of Ag nanoparticles deposited on thermoexfoliated g-C3N4, Nanomaterials, 14(7) (2024) 623. https://doi.org/10.3390/nano14070623.
[59] Zhang M, Xing M, Dong B, Zhang H, Sun X, Li Q, Lu X, Mo J, Zhu H. Thermal polymerisation synthesis of g-C3N4 for photocatalytic degradation of rhodamine B dye under natural sunlight, Water, 15(16) (2023) 2903. https://doi.org/10.3390/w15162903.
[60] Maged S, El-Borady O.M, El-Hosainy H, M. El-Kemary. Efficient photocatalytic reduction of p-nitrophenol under visible light irradiation based on Ag NPs loaded brown 2D g-C3N4 / g-C3N4 QDs nanocomposite. Environ Sci Pollut Res, 30 (2023)117909–117922. https://doi.org/10.1007/s11356-023-30010-z.
[61] C. Li, T. Sun, G. Yi, D. Zhang, Y. Zhang, X. Lin, J. Liu, Z. Shi, Q. Lin, Microwave-assisted method synthesis of Ag/CNQDs/g-C3N4 with excellent photocatalytic activity for the degradation of norfloxacin, Colloids Surf. A, 662 (2023) 131001. https://doi.org/10.1016/j.colsurfa.2023.131001.
[62] J. Yuan, H. Zhou, D. Li, F. Xu, Construction of Fe3S4/g-C3N4 composites as photo-Fenton-like catalysts to realize high-efficiency degradation of pollutants, Ceram. Int., 49(10) (2023) 16070-16079. https://doi.org/10.1016/j.ceramint.2023.01.205.
[63] W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Enhanced visible-light-driven photocatalytic removal of NO: effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal. B, 179 (2015) 106-112. https://doi.org/10.1016/j.apcatb.2015.05.010.
[64] J. Wang, S. Wang, A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application, Coord. Chem. Rev., 453 (2022) 214338. https://doi.org/10.1016/j.ccr.2021.214338.
[65] D.J. Morgan, Core-level reference spectra for bulk graphitic carbon nitride (g-C3N4), Surf. Sci. Spectra, 28(1) (2021) 014007. https://doi.org/10.1116/6.0001083
[66] L. Acharya, B.P. Mishra, S.P. Pattnaik, R. Acharya, K. Parida, Incorporating nitrogen vacancies in exfoliated B-doped g-C3N4 towards improved photocatalytic ciprofloxacin degradation and hydrogen evolution, New J. Chem., 46(7) (2022) 3493-3503. https://doi.org/10.1039/D1NJ05838J.
[67] Y. Xue, C. Ma, Q. Yang, X. Wang, S. An, X. Zhang, J. Tian, Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production, Chem. Eng. J., 457 (2023) 141146. https://doi.org/10.1016/j.cej.2022.141146.
[68] Y. Li, M. Ti, D. Zhao, Y. Zhang, L. Wu, Y. He, Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia, J. Alloys Compd., 870 (2021) 159298. https://doi.org/10.1016/j.jallcom.2021.159298.
[69] D. Nasirian, I. Salahshoori, M. Sadeghi, N. Rashidi, M. Hassanzadeganroudsari, Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane, Polym. Bull., 77 (2020) 5529-5552. https://doi.org/10.1007/s00289-019-03031-3.