簡易檢索 / 詳目顯示

研究生: 林嘉峻
Chia-Chun Lin
論文名稱: 利用連續式及脈衝式電漿製備含胺基及類聚乙二醇薄膜並應用於生醫材料
Preparation of Amine-containing and PEG-like Thin Films via Continuous and Pulsed Plasma Polymerization Methods for Biomaterials Application
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 陳克紹
Ko-Shao Chen
莊怡哲
Yi-Je Juang
魏大欽
Ta-Chin Wei
何明樺
Ming-Hua Ho
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 電漿聚合聚正庚胺生物相容性化學鍍銅抗沾黏
外文關鍵詞: Plasma polymerization, Heptylamine, Biocompatibility, PEG-like, Antifouling
相關次數: 點閱:510下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩部分,第一部分為製備含胺基之電漿聚合正庚胺 (ppHA) 薄膜,改善光聚合材料生物相容性,及利用胺基與金屬離子螯合的特性,結合熱還原方法,製備銀/聚正庚胺 (Ag/ppHA) 複合薄膜,以作為化學鍍銅時的活化層;第二部分為利用二乙二醇二乙烯基醚 (diethylene glycol divinyl ether, DVE) 及二乙二醇二乙醚 (diethylene glycol diethyl ether, DEE) 等乙二醇衍生物,作為電漿聚合前驅物,製備抗沾黏薄膜。
    於第一部分的論文中,在光聚合材料PCL-f2、PCL-f6及PPG-f2上沉積含胺基之聚正庚胺薄膜,利用水接觸角量測發現當沉積聚正庚胺薄膜5至60分鐘後,接觸角可由改質前的72°左右上升至90°;利用ESCA分析表面元素組成,發現表面氮含量隨沉積時間增加,可由3 %上升至9 %,證明聚正庚胺薄膜成功沉積於材料表面。以L-929老鼠纖維母細胞探討材料生物相容性,由LDH分析結果顯示PCL-f2、PCL-f6及PPG-f2經沉積聚正庚胺薄膜後,細胞貼附量分別提升270 %、167 %及141 %,可知含胺基之聚正庚胺薄膜可有效提升生物相容性。
    另外,利用聚正庚胺薄膜作為銀離子螯合層,於150 °C、250 °C及350 °C熱還原溫度下製備Ag/ppHA複合薄膜以作為化學鍍銅的表面活化層。由橢圓偏光儀分析聚正庚胺薄膜受熱處理溫度的影響,結果顯示增加熱處理溫度到350 °C,將導致薄膜厚度由500 nm降低至48 nm;藉由電子顯微鏡觀察銀粒子及銅層表面形態,發現熱處理溫度提升,銀離子還原量明顯提升,但250 °C下製備的Ag/ppHA複合薄膜可形成較緻密且均勻的化學鍍銅層,ESCA分析結果亦顯示熱還原溫度為250 °C時,具有最高的銅含量 (9.1 %)。此外,本研究結合接觸印刷技術,成功於載玻片上製備0.368 mm及0.756 mm線寬的銅線。
    在第二部分的論文中,利用DVE及DEE等乙二醇衍生物作為前驅物,製備電漿聚合薄膜 (連續式):ppDVE及ppDEE,分別改變沉積壓力 (100 mtorr、200 mtorr) 及施加功率 (10 W、20 W、40 W),探討電漿參數對薄膜物理化學性質及抗沾黏特性的影響。由橢圓偏光儀測量薄膜厚度發現同樣電漿參數下,結構中含有C=C官能基的ppDVE薄膜沉積速率高於ppDEE,最高分別可達12.90 nm/min及2.74 nm/min (200 mtorr,10 W);水接觸角測量結果顯示ppDVE及ppDEE水接觸角最低分別約為19°及45° (100 mtorr,10 W);由FITC-BSA及L-929老鼠纖維母細胞貼附結果發現,於10 W下沉積的ppDVE及ppDEE具有較好的抗沾黏特性,但於40 W下沉積則具有較好的生物相容性。接著利用ESCA分析薄膜表面元素組成發現低功率較能保有單體原本的性質,而改變沉積壓力時抗沾黏特性及生物相容性則無顯著變化。綜合以上分析結果可知施加功率對薄膜性質有較顯著的影響,且薄膜親疏水性質為影響薄膜抗沾黏特性的主要原因。
    最後,本論文亦藉由手動控制電漿點燃及熄滅時間比例 (3/7、1/9) 的擬脈衝式電漿,沉積ppDVE薄膜,並與連續式電漿聚合薄膜比較。利用橢圓偏光儀量測結果顯示連續式及能率循環3/7及1/9的擬脈衝式電漿沉積速率分別為9.06、2.22及0.97 nm/min,可發現沉積速率約與電漿點燃時間成正比;由先前連續式電漿聚合膜薄得知親疏水性質為影響薄膜抗沾黏特性的主要原因,但由水接觸角量測結果發現改變電漿點燃時間,接觸角皆為55 ~ 59°,說明連續式及擬脈衝式電漿聚合薄膜親疏水性質無明顯差異。


    The versatility of plasma was demonstrated in this thesis by applying plasma technique for two applications. In the first part, plasma polymerized heptylamine (ppHA) containing amine functionalities on photo-polymerized materials was aimed to promote biocompatibility. Additionally, Ag/ppHA composite films were fabricated as the surface activator for electroless copper plating thank to the metal ion-chelating ability of ppHA, combining with heat reduction method. In the second part, PEG-like coatings by plasma polymerized diethylene glycol divinyl ether (ppDVE) and diethylene glycol diethyl ether (ppDEE) were prepared for anti-fouling applications.
    In the first part, ppHA was deposited on the photo-polymerized materials including PCL-f2, PCL-f6 and PPG-f2 on the purpose of improvement of biocompatibility. The surface wettability and elemental composition were characterized by water contact angle (WCA) and Electron Spectroscopy for Chemical Analysis (ESCA), respectively. The results showed that WCA increased from around 72° to 90°, and nitrogen content increased from 3 % to 9 % after ppHA deposition for 5 to 60 min, respectively. The biocompatibility was investigated by L-929 fibroblasts cultivation that the cell number on PCL-f2, PCL-f6, and PPG-f2 increased to 270 %, 167 %, and 141 % after ppHA deposition, correspondingly. Therefore, amine-containing plasma polymerized films can enhance the biocompatibility of photo-polymerized materials.
    Ag/ppHA composites were employed as surface activator for electroless plating to produce Cu/Ag/ppHA composites. The effects of temperature for the heat treatment of ppHA, silver, and copper layers were investigated. From SEM images, the uniform and compact copper layer was formed on the Ag/ppHA by 250 °C heat treatment. To demonstrate the feasibility of the selective growth of copper layer on Ag/ppHA, the patterns of copper with 0.368 and 0.756 mm of line width were also successfully generated on the glass slide via contact printing technique.
    The second topic of this thesis is to apply DVE and DEE as precursors for plasma polymerization to prepare anti-fouling coating layers. The effects of working pressure and applied power on the antifouling ability of the prepared ppDVE and ppDEE were studied. The film thickness and surface wettability were evaluated by ellipsometry and WCA measurements. The anti-fouling ability of ppDVE and ppDEE was characterized by FITC-BSA adsorption and cell proliferation of L-929 fibroblasts. The results showed that the surface properties and anti-fouling ability of ppDVE and ppDEE were highly affected by the plasma applied power that the films deposited at 10 W showed higher hydrophilicity and better antifouling ability than those deposited at 40 W.
    In addition, the pulsed plasma polymerization of DVE was performed for the purpose of comparisons. The surface property of ppDVE at different plasma duty cycles (ratios of on time and off time: 3/7, 1/9) was compared with that prepared by continuous plasma. The results showed that water contact angle was around 55° to 59° after ppDVE deposition by both continuous and pulsed plasma polymerization, and the deposition rate was approximately proportional to plasma on-time.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 xiv 縮寫表 xv 第一章 緒論 1 1-1 研究背景 1 1-2 研究目標 2 第二章 文獻回顧 3 2-1 電漿介紹 3 2-1-1 電漿定義 3 2-1-2 電漿應用 4 2-1-3 電漿聚合含胺基薄膜 5 2-2 生物沾黏 8 2-2-1 抗沾黏高分子 8 2-2-2 聚乙二醇 8 2-2-3 兩性高分子 15 第三章 實驗方法與儀器原理 21 3.1 實驗藥品 21 3-1-1 電漿聚合前驅物 21 3-1-2 光聚合材料 22 3-1-3 合成奈米銀粒子及化學鍍銅 22 3-1-4 細胞培養所需藥品 23 3-1-5 配製LDH反應劑所需藥品 24 3.2 實驗方法 24 3-2-1 射頻電漿系統 24 3-2-2 薄膜沉積 26 3-2-3 細胞貼附測試 28 3-2-4 蛋白質貼附測試 30 3-2-5 製備銀/聚正庚胺 (Ag/ppHA) 複合薄膜 30 3-2-6 利用化學鍍銅製備銅/銀/聚正庚胺複合薄膜 (Cu/Ag/ppHA) 30 3.3 儀器原理及方法 31 3-3-1 橢圓偏光儀 (Ellipsometry) 31 3-3-2水接觸角量測儀 (water contact angle measurement device) 31 3-3-3 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 32 3-3-4 全反射式傅立葉紅外線光譜儀 (attenuated total reflection Fourier transform infrared spectroscopy, ATR-FTIR) 33 3-3-5 化學分析電子能譜儀 (electron spectroscopy for chemical analysis, ESCA) 33 第四章 結果與討論 35 4-1 電漿聚合正庚胺薄膜 (ppHA) 以應用於生醫材料及化學鍍銅 35 4-1-1 電漿聚合正庚胺薄膜改善光聚合材料之生物相容性 35 4-1-2電漿聚合正庚胺薄膜應用於化學鍍銅 41 4-2 電漿聚合抗沾黏薄膜:ppDVE、ppDEE 49 4-2-1 沉積壓力對ppDVE及ppDEE特性之影響 (連續式) 49 4-2-2 施加功率對ppDVE及ppDEE特性之影響 (連續式) 59 4-2-3 擬脈衝式電漿聚合DVE及探討連續式及擬脈衝式電漿之差異 80 第五章 結論與未來展望 85 5.1 電漿聚合正庚胺薄膜 (ppHA) 以應用於生醫材料及化學鍍銅 85 5.2 電漿聚合抗沾黏薄膜:ppDVE、ppDEE 88 第六章 參考文獻 91

    [1] Jayakumar, R., M. Prabaharan, P.T.S. Kumar, S.V. Nair, and H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011. 29(3): p. 322-337.
    [2] Tu, Q., J.-C. Wang, R. Liu, Y. Zhang, J. Xu, J. Liu, M.-S. Yuan, W. Liu, and J. Wang, Synthesis of polyethylene glycol- and sulfobetaine-conjugated zwitterionic poly(l-lactide) and assay of its antifouling properties. Colloids and Surfaces B: Biointerfaces, 2013. 102: p. 331-340.
    [3] Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013. 38(8): p. 1232-1261.
    [4] Huang, J., J. Xue, K. Xiang, X. Zhang, C. Cheng, S. Sun, and C. Zhao, Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)–polyurethane–methoxyl poly(ethylene glycol). Colloids and Surfaces B: Biointerfaces, 2011. 88(1): p. 315–324.
    [5] Yue, W.-W., H.-J. Li, T. Xiang, H. Qin, S.-D. Sun, and C.-S. Zhao, Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013. 446: p. 79-91.
    [6] Ruckenstein, E. and Z.F. Li, Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science, 2005. 113: p. 43-63.
    [7] Yang, K., J.S. Lee, J. Kim, Y.B. Lee, H. Shin, S.H. Um, J.B. Kim, K.I. Park, H. Lee, and S.-W. Cho, Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012. 33(29): p. 6952–6964.
    [8] Shadanbaz, S. and G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomaterialia, 2012. 8(1): p. 20-30.
    [9] Jacobs, T., R. Morent, N.D. Geyter, P. Dubruel, and C. Leys, Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma Chem Plasma Process, 2012. 32: p. 1039–1073.
    [10] Liu, X., Q. Feng, A. Bachhuka, and K. Vasilev, Surface Modification by Allylamine Plasma Polymerization Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells. ACS Appl. Mater. Interfaces, 2014. 6: p. 9733-9741.
    [11] Ohl, A., W. Schleinitz, A. Meyer-Sievers, A. Becker, D. Keller, K. Schroder, and J. Conrads, Design of an UHV reactor system for plasma surface treatment of polymer materials. Surface and Coatings Technology, 1999. 116-119: p. 1006-1010.
    [12] Chu, P.K., J.Y. Chen, L.P. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering R, 2002. 36: p. 143-206.
    [13] Martin, Y., D. Boutin, and P. Vermette, Study of the effect of process parameters for n-heptylamine plasma polymerization on final layer properties. Thin Solid Films, 2007. 515: p. 6844–6852.
    [14] Vasilev, K., Nanoengineered Plasma Polymer Films for Biomaterial Applications. Plasma Chem Plasma Process, 2014. 34: p. 545–558.
    [15] Cheng, Q. and K. Komvopoulos, Synthesis of Polyethylene Glycol-Like Films from Capacitively Coupled Plasma of Diethylene Glycol Dimethyl Ether Monomer. J. Phys. Chem. C, 2009. 113: p. 213-219.
    [16] Michelmore, A., P. Gross-Kosche, S.A. Al-Bataineh, J.D. Whittle, and R.D. Short, On the Effect of Monomer Chemistry on Growth Mechanisms of Nonfouling PEG-like Plasma Polymers. Langmuir, 2013. 29: p. 2595-2601.
    [17] Fitzpatrick, R., Introduction to plasma physics. The University of Texas at Austin: sn, 2008: p. 242.
    [18] Wang, W., M. Rong, J.D. Yan, and Y. Wu, The reactive thermal conductivity of thermal equilibrium and nonequilibrium plasmas: application to nitrogen. Plasma Science, IEEE Transactions on, 2012. 40(4): p. 980-989.
    [19] Vlachopoulou, M.-E., G. Kokkoris, C. Cardinaud, E. Gogolides, and A. Tserepi, Plasma Etching of Poly(dimethylsiloxane): Roughness Formation, Mechanism, Control, and Application in the Fabrication of Microfluidic Structures. Plasma Process. Polym., 2013. 10: p. 29-40.
    [20] Williams, T.S., H. Yu, and R.F. Hicks, Atmospheric pressure plasma activation as a surface pre-treatment for the adhesive bonding of aluminum 2024. Journal of Adhesion Science and Technology, 2014. 28(7): p. 653–674.
    [21] Testricha, H., H. Reblb, B. Finkec, F. Hempelc, B. Nebeb, and J. Meichsnera, Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Materials Science and Engineering: C, 2013. 33(7): p. 3875-3880.
    [22] Salem, D.B., O. Carton, H. Fakhouri, J. Pulpytel, and F. Arefi-Khonsari, Deposition of Water Stable Plasma Polymerized Acrylic Acid/MBA Organic Coatings by Atmospheric Pressure Air Plasma Jet. Plasma Process. Polym., 2014. 11: p. 269–278.
    [23] Donnelly, V.M. and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A, 2013. 31(5): p. 050825.
    [24] Chan, C.-M., T.-M. Koa, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface Science Reports, 1996. 24(1-2): p. 1-54.
    [25] Caschera, D., A. Mezzi, L. Cerri, T.d. Caro, C. Riccucci, G.M. Ingo, G. Padeletti, M. Biasiucci, G. Gigli, and B. Cortese, Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, 2014. 21: p. 741-756.
    [26] Noeske, M., J. Degenhardt, S. Strudthoff, and U. Lommatzsch, Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. International Journal of Adhesion and Adhesives, 2004. 24(2): p. 171-177.
    [27] Xiong, L., P. Chen, and Q. Zhou, Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment. Journal of Adhesion Science and Technology, 2014. 28(11): p. 1046–1054.
    [28] Chen, H., Q. Lin, Q. Xu, Y. Yang, Z. Shao, and Y. Wang, Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. Journal of Membrane Science, 2014. 458: p. 217-224.
    [29] Waterhouse, A., S.G. Wise, Y. Yin, B. Wu, B. James, H. Zreiqat, D.R. McKenzie, S. Bao, A.S. Weiss, M.K.C. Ng, and M.M.M. Bilek, In vivo biocompatibility of a plasma-activated, coronary stent coating. Biomaterials, 2012. 33(32): p. 7984–7992.
    [30] Reis, R., L.F. Dumée, L. He, F. She, J.D. Orbell, B. Winther-Jensen, and M.C. Duke, Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion. ACS Appl. Mater. Interfaces, 2015. 7: p. 14644-14653.
    [31] Gunda, N.S.K., M. Singh, L. Norman, K. Kaur, and S.K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 2014. 305: p. 522-530.
    [32] Coad, B.R., M. Jasieniak, S.S. Griesser, and H.J. Griesser, Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surface and Coatings Technology, 2013. 233: p. 169-177.
    [33] Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 2012. 30(3): p. 489-511.
    [34] Rahimpour, A., M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, and B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination, 2012. 286: p. 99-107.
    [35] Guo, L., W. Yuan, Z. Lu, and C.M. Li, Polymer/nanosilver composite coatings for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 439: p. 69-83.
    [36] Kaklamani, G., NaziaMehrban, JamesBowen, HanshanDong, L. Grover, and ArtemisStamboulis, Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glass. MaterialsLetters, 2013. 111: p. 225-229.
    [37] Vasilev, K., V. Sah, K. Anselme, C. Ndi, M. Mateescu, B.r. Dollmann, P. Martinek, H. Ys, L. Ploux, and H.J. Griesser, Tunable Antibacterial Coatings That Support Mammalian Cell Growth. Nano Lett., 2010. 10: p. 202-207.
    [38] Thevenot, P., W. Hu, and L. Tang, SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY. Curr Top Med Chem., 2008. 8(4): p. 270-280.
    [39] Bruce Furie, M.D. and P.D. Barbara C. Furie, Mechanisms of Thrombus Formation. The New England Journal of Medicine, 2008. 359: p. 938-949.
    [40] Ravichandran, R. and S. Sundarrajan, Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromolecular Bioscience, 2012. 12: p. 286-311.
    [41] Liechty, W.B., D.R. Kryscio, B.V. Slaughter, and N.A. Peppas, Polymers for Drug Delivery Systems. Annu Rev Chem Biomol Eng, 2010. 1: p. 149-173.
    [42] Adhikari, B. and S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci., 2004. 29: p. 699-766.
    [43] Ratner, B.D. and S.J. Bryant, BIOMATERIALS: Where We Have Been and Where We Are Going. Annu. Rev. Biomed. Eng., 2004. 6: p. 41-75.
    [44] Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51: p. 5283-5293.
    [45] Lin, N. and A. Dufresne, Physical and/or Chemical Compatibilization of Extruded Cellulose Nanocrystal Reinforced Polystyrene Nanocomposites. Macromolecules, 2013. 46: p. 5570-5583.
    [46] Xuan, H. and C. He, Improved Antifouling Property of PVDF Membranes with Crosslinked PEG Advanced Materials Research, 2015. 1078: p. 53-56.
    [47] Yang, Y.Q., W.J. Lin, L.J. Zhang, C.Z. Cai, W. Jiang, X.D. Guo, and Y. Qian, Synthesis, Characterization and pH-Responsive Self-Assembly Behavior of Amphiphilic Multiarm Star Triblock Copolymers Based on PCL, PDEAEMA, and PEG. Macromolecular Research, 2013. 21(9): p. 1011-1020.
    [48] Muir, B.W., A. Tarasova, T.R. Gengenbach, D.J. Menzies, L. Meagher, F. Rovere, A. Fairbrother, K.M. McLean, and P.G. Hartley, Characterization of Low-Fouling Ethylene Glycol Containing Plasma Polymer Films. Langmuir, 2008. 24: p. 3828-3835.
    [49] Lopez, G.P., B.D. Ratner, C.D. Tidwell, H. Claire L, R.J. Rapoza, and T.A. Horbett, Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. Journal of Biomedical Materials Research, 1992. 26: p. 415-439.
    [50] Shen, M., M.S. Wagner, D.G. Castner, B.D. Ratner, and T.A. Horbett, Multivariate Surface Analysis of Plasma-Deposited Tetraglyme for Reduction of Protein Adsorption and Monocyte Adhesion. Langmuir, 2003. 19: p. 1692-1699.
    [51] Wu, Y.J., A.J. Griggs, J.S. Jen, S. Manolache, F.S. Denes, and R.B. Timmons, Pulsed Plasma Polymerization of Cyclic Ethers: Production of Biologically Nonfouling Surfaces. Plasmas and Polymers, 2001. 6(3): p. 123-144.
    [52] Johnston, E.E., J.D. Bryers, and B.D. Ratner, Plasma Deposition and Surface Characterization of Oligoglyme, Dioxane, and Crown Ether Nonfouling Films. Langmuir, 2005. 21: p. 870-881.
    [53] Bretagnol, F., M. Lejeune, A. Papadopoulou-Bouraoui, M. Hasiwa, H. Rauscher, G. Ceccone, P. Colpo, and F. Rossi, Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomaterialia, 2006. 2: p. 165-172.
    [54] Yang, Z., J. Wang, X. Li, Q. Tu, H. Sun, and N. Huang, Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films. Applied Surface Science, 2012. 258: p. 3378-3385.
    [55] Buxadera-Palomero, J., C. Canal, S. Torrent-Camarero, B. Garrido, F.J. Gil, and D. Rodríguez, Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases, 2015. 10(2): p. 029505.
    [56] Liu, Q., A. Singh, and L. Liu, Amino Acid-Based Zwitterionic Poly(serine methacrylate) as an Antifouling Material. Biomacromolecules, 2013. 14: p. 226-231.
    [57] Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 2014. 46: p. 436–443.
    [58] Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014. 30(32): p. 9625-9636.
    [59] Li, P., X. Cai, D. Wang, S. Chen, J. Yuan, L. Li, and J. Shen, Hemocompatibility and anti-biofouling property improvement ofpoly(ethylene terephthalate) via self-polymerization of dopamine andcovalent graft of zwitterionic cysteine. Colloids and Surfaces B: Biointerfaces, 2013. 110: p. 327-332.
    [60] Losurdo, M. and K. Hingerl, Ellipsometry at the Nanoscale. 2013: Springer.
    [61] BONA, A.D., Characterizing ceramics and the interfacial adhesion to resin: II-the relationship of surface treatment , bond strength, interfacial toughness and fractography. Journal of Applied Oral Science, 2005. 13(2): p. 101-9.
    [62] Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science techniques. 2013, Springer. p. 3-34.
    [63] 林智仁 and 羅聖全, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 2003. 201: p. 90-98.
    [64] 張立信, 表面化學分析技術. 國家奈米元件實驗室奈米通訊, 2012. 19(4): p. 17-23.
    [65] Lin, C.-H., Antibacterial Effects and Cu Electroless Plating of Amine-Containing Plasma Thin Films Containing Metallic Nanoparticle in Department of Chemical Engineering2015, National Taiwan University of Science and Technology.
    [66] Chen, Z., X.J. Dai, K. Magniez, P.R. Lamb, B.L. Fox, and X. Wang, Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Composites: Part A, 2014. 56: p. 172-180.
    [67] Testrich, H., H. Rebl, B. Finke, F. Hempel, B. Nebe, and J. Meichsner, Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Materials Science and Engineering C, 2013. 33: p. 3875-3880.
    [68] Gordeev, I., A. Choukourov, M. Sˇimek, V.c. Prukner, and H. Biederman, PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge. Plasma Process. Polym., 2012. 9.
    [69] Sardella, E., R. Gristina, G.S. Senesi, R. d'Agostino, and P. Favia, Homogeneous and Micro‐Patterned Plasma‐Deposited PEO‐Like Coatings for Biomedical Surfaces. Plasma Processes and Polymers, 2004. 1(1): p. 63-72.
    [70] Koch, B.M.L., A. Amirfazli, and J.A.W. Elliott, Modeling and Measurement of Contact Angle Hysteresis on Textured High-Contact-Angle Surfaces. J. Phys. Chem. C, 2014. 118: p. 18554-18563.
    [71] Hozumi, A., D.F. Cheng, and M. Yagihashi, Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis. Journal of Colloid and Interface Science, 2011. 353: p. 582-587.

    無法下載圖示 全文公開日期 2021/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE