簡易檢索 / 詳目顯示

研究生: 羅傑
Chieh Lo
論文名稱: 具鋰離子傳導LixSnOS粉體開發與其混成電解質應用於固態鋰離子電池之研究
Studies on LixSnOS Superionic Conductor and its Hybrid Electrolyte for Solid State Lithium Ion Battery
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kai Shiue
魏茂國
Mao-Kuo Wei
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: 固態陶瓷高鋰離子傳導之粉體層狀Li[Li1/3Sn2/3(O,S)2]固態混成電解質電特性鋰電池
外文關鍵詞: solid ceramic high lithium ion conduction powder, layered Li[Li1/3Sn2/3(O,S)2], solid mixed electrolyte, electrical properties
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前商品化的鋰電池主要採用有機電解質來製作,但電池不當使用導致受熱與爆炸危險的問題,持續有發生過。此外,考慮到微型化、可撓性與高能量密度,可撓式全固態鋰電池的開發有其重要性。
目前固態電解質材料主要有兩種: (1) 無機陶瓷固態電解質與(2)高分子固態電解質薄膜兩種。無機陶瓷固態電解質的材料雖能提供所需的鋰離子導電度,但存在有剛性問題,無法應用於捲曲應用的條件;高分子固態電解質薄膜材料皆屬導電高分子,能夠移轉共軛電子但鋰離子導電度皆不理想。目前在研究方面,室溫下擁有較高鋰離子傳導率為10-2 S/cm的是Li10GeP2S12和其衍生物Li10MP2X12 (M= Ge;Sn;Si, X= S; Se)以及各種鋰硫化物,可惜的是此類型硫化物對濕氣有著極大的敏感度。
因此本研究將結合硫化物和氧化物的優點,依不同Li:Sn莫耳比的組成配方(LixSnOS)進行物理混合後,經400-600oC高溫煆燒與硫化反應,成功地開發具鋰離子傳導率之無機Li3x[LixSn1-x(O,S)2]陶瓷粉體。藉由改變不同Li:Sn莫耳比所合成不同Li:Sn比所合成的LixSnOS粉體(x = 1、1.5、1.8、2.0、2.2、3.0)、不同硫化溫度(500oC、550oC、600oC)以及不同硫化補償碇(0S、0.5S、1S、1.5S)此三種變數,獲得由Li2SnOS-550-1S條件得到具有最佳鋰離子傳導率達1.92×10-4 S/cm之Li[Li1/3Sn2/3(O,S)2]或Li2Sn(O,S)3陶瓷粉體。
經化學沉析法與煆燒製備所得固態陶瓷高鋰離子傳導之粉體(Li2SnOS-550-1S)與核能研究所物理組所改良的PVDF-HFP高分子電解質混成,進行不同比例之混摻來製作固態混成電解質之鋰離子電池,並進行材料與元件特性研究。不同Li2SnOS-550-1S添加量所得10%、20%、30%、40%、50%之Li2SnOS-550/PVDF-HFP混成電解質,進行EIS阻抗頻譜分析,隨著Li2SnOS-550粉體含量上升其離子傳導率下降。但很有趣的是進行電池三明治結構之鋰金屬/混成固態電解質/LiCoO2電池元件進行元件電特性分析發現,從循環伏安法(CV)分析及電池的充放電測試及效率測試,可以看到在混成材料當中,以30% Li2SnOS-550/PVDF-HFP之電解質在30次充放電迴圈實驗下,有最佳電容量134.6 mAh/g且效率達95%。


In recent years, commercially available lithium ion batteries have been mainly produced using organic electrolytes, but the problem of heat and explosion caused by improper use of batteries still continuously occurs. In addition, considering the miniaturization, flexibility and high energy density, the development of flexible all-solid-state lithium batteries is of importance.
At present, there are two types of solid electrolyte materials: (1) Inorganic ceramic solid electrolyte and (2) Polymer solid electrolyte thin film. Although inorganic ceramic solid electrolyte membrane can provide the required lithium ion conductivity, there is a problem of rigidity, which cannot be applied to the flexible electronics; the polymer solid electrolyte membrane materials are all conductive macromolecules and can transfer conjugated electrons, but its lithium ion conductivity is not ideal. At present, in terms of research, Li10GeP2S12 and its derivatives Li10MP2X12 (M= Ge; Sn; Si, X=S; Se) and others have shown the good lithium ion conductivity of 10-2 S/cm at room temperature. Unfortunately, this type of sulfides is extremely sensitive to moisture.
This study combines the advantages of high Li ion conductivity of sulfides and high chemical stability of oxides to prepare Li-Sn bimetal oxysulfide at different Li:Sn molar ratios to form the Li ion conductor of Li3x[LixSn1-x(O,S)2]. The experimental parameters include the different Li:Sn molar ratios for LixSnOS powders at x= 1, 1.5, 1.8, 2, and 2.2, the different processing temperatures at 500 oC, 550oC, and 600oC, and the different numbers of compensation disks for sulfurization at 0S, 0.5S, 1S, and 1.5S. The best solid electrolyte is the Li2SnOS-550-1S with Li ion conductivity of 1.92×10-4 S/cm, in which Li2SnOS-550-1S means the LixSnOS mixed powder has a Li:Sn molar ratio of 2:1 and is fired at 550 oC under one compensation disk.
Solid-state lithium ion conductive powder of Li2SnOS-550-1S in the amount of 10, 20, 30, 40, and 50 wt.% was mixed with the modified PVDF-HFP electrolyte provided by the Institute of Nuclear Energy Research of Taiwan to form the inorganic/organic hybrid electrolytes. The hybrid electrolyte and its Li-ion battery device were evaluated for their properties. It was observed that the Li-ion conductivity of Li2SnOS-550/ PVDF-HFP hybrid films decreased with the increase in the amount of Li2SnOS-550, but the hybrid Li-ion battery with the sandwich structure of LiCoO2 /hybrid solid electrolyte/Li demonstrated improved performance. The hybrid Li-ion battery with the electrolyte of 30 wt.% Li2SnOS-550/ PVDF-HFP had the electrical capacity of 134.6 mAh/g and an efficiency of 95% for 30 cycle runs.

中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第2章 文獻回顧與動機 6 2.1 固態鋰離子導體 7 2.1.1 氧化物型的離子導體 7 2.1.1.1 50Li2O−(50–x)P2O5−x SiO2與(1–x)LiPO3−x SiO2氧化物型鋰離子導體[31] 7 2.1.1.2 Li16-2xDx(TO4)4 (D = Mg或Zn,T = Si或Ge) 氧化物型鋰離子導體[32] 9 2.1.1.3 Li7La3Zr2O12氧化物型固態鋰離子導體 10 2.1.2 硫化物型的鋰離子導體 12 2.1.2.1 Li10GeP2S12硫化物型固態鋰離子導體之發現 12 2.1.2.2 固態鋰離子導體之材料設計 13 2.1.2.3 Li10Si0.3Sn0.7P2S12離子導體之開發 15 2.1.2.4 Li9.54Si1.74P1.44S11.7Cl0.3高功率全固態電池超導離子導體 16 2.1.2.5 Li10SnP2S12離子導體之開發 18 2.1.2.6 新型硫化物Li0.6(Li0.2Sn0.8)S2離子導體之開發 19 2.1.3 新型硫氧化物電解質 20 2.1.3.1 LiAlSO硫氧型離子導體[39] 20 2.1.3.2 Li–P–S–O固態電解質[15] 21 2.2 高分子電解質的種類與發展趨勢 22 2.3 全固態鋰離子電池 24 第3章 研究方法與步驟 27 3.1 實驗材料及規格 27 3.2 實驗設備 28 3.2.1 電磁加熱攪拌器 28 3.2.2 超音波洗淨機 28 3.2.3 離心機 28 3.2.4 減壓濃縮機 28 3.2.5 分析電子天平 28 3.2.6 真空烘箱 28 3.2.7 高溫式管型爐 28 3.2.8 手套箱 30 3.3 實驗步驟 31 3.3.1 合成SnOS 31 3.3.2 添加鋰 32 3.3.3 煆燒處理 32 3.3.4 核研所研發之高鋰傳導率的膠態高分子 32 3.3.5 有機/無機混成固態電解質漿料塗佈 32 3.3.6 無機陶瓷粉體及有機/無機混成固態電解質特性量測 33 3.4 分析儀器介紹及量測參數 34 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 34 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 35 3.4.3 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 感應耦合電漿質譜分析儀 36 3.4.4 電化學阻抗頻譜法(EIS) 量測 37 3.5 電池製作與電池特性分析 40 3.5.1 極片製備 40 3.5.2 鈕扣型電池組裝 40 3.5.3 循環伏安法分析 41 3.5.4 電化學效能測試 41 第4章 結果與討論 42 4.1 針對合成材料之組成參數尋找及其特色之所在 43 4.1.1 針對材料合成條件參數 43 4.1.2 新型LixSnOS粉體特色 47 4.2 不同Li:Sn比合成的LixSnOS粉體其分析及探討 50 4.2.1 不同Li含量之LixSnOS粉體其XRD分析 50 4.2.2 不同Li含量之LixSnOS粉體其SEM及EDS分析 54 4.2.3 不同Li含量之LixSnOS粉體其ICP組成鑑定分析 57 4.2.4 不同Li含量之LixSnOS碇材其EIS特性分析 61 4.3 不同硫化溫度處理的Li2SnOS粉體其特性分析及探討 65 4.3.1 不同硫化溫度處理的Li2SnOS粉體其XRD分析 65 4.3.2 不同硫化處理溫度之Li2SnOS粉體其SEM及EDS分析 67 4.3.3 不同硫化溫度處理之Li2SnOS粉體其ICP組成分析 70 4.3.4 不同硫化溫度處理之LixSnOS粉體其EIS阻抗頻譜分析 73 4.4 不同硫含量之Li2SnOS-550粉體其特性分析及探討 76 4.4.1 改變硫化補償碇之Li2SnOS-550粉體其XRD分析 76 4.4.2 改變硫化補償碇之Li2SnOS-550粉體其SEM及EDS分析 78 4.4.3 改變硫化補償碇之Li2SnOS-550粉體其ICP組成分析 80 4.4.4 改變硫化補償碇之Li2SnOS-550粉體其EIS阻抗分析 83 4.5 有機/無機混成固態電解質分析及探討 86 4.5.1 Li2SnOS-550/改質PVDF-HFP混成固態電解質其EIS分析 86 4.5.2 有機/無機混成固態電解質製得鋰離子電池其CV分析 90 4.5.3 有機/無機混成固態電解質鋰電池充放電元件測試 93 第5章 結論 100 第6章 參考文獻 104

[1] 程品皓, Development of additives for lithium-ion battery, 國立台灣科技大學化學工程系研究所碩士學位論文, 2013.
[2] 郭昭延, 鋰離子電池預置鋰技術之研究, 國立台灣科技大學化學工程系研究所碩士學位論文, 2014.
[3] Z. Ma, H.-G. Xue, S.-P. Guo, Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance, Journal of Materials Science, 53 (2018) 3927-3938.
[4] J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction, Chemical Reviews, 116 (2016) 140-162.
[5] V. Thangadurai, S. Narayanana, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chemical Society Reviews, 43 (2014) 4714-4727.
[6] H. Kim, Y. Ding, P.A. Kohl, LiSICON – ionic liquid electrolyte for lithium ion battery, Journal of Power Sources, 198 (2012) 281-286.
[7] S.-W. Baek, I. Honma, J. Kim, D. Rangappa, Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery, Journal of Power Sources, 343 (2017) 22-29.
[8] 黃可龍,王兆祥,劉素琴, 鋰離子電池原理與關鍵技術, 化學工業, 北京, 2013.
[9] S.J. Dillon, K. Sun, Microstructural design considerations for Li-ion battery systems, Current Opinion in Solid State and Materials Science, 16 (2012) 153-162.
[10]万萍萍,中國工程院院士陳立泉:把握下一代電池技術方向,佈局全固態電池, 高工锂电,中國, 2015. http://www.gg-lb.com/asdisp2-65b095fb-16765-.html
[11] M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems, Nano Letters, 12 (2012) 4810-4816.
[12] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 1 (2016) 16030.
[13] M. Tatsumisago, M. Nagao, A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, Journal of Asian Ceramic Societies, 1 (2013) 17-25.
[14] X. Wang, R. Xiao, H. Li, L. Chen, Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in [small beta]-Li3PS4 electrolyte, Physical Chemistry Chemical Physics, 18 (2016) 21269-21277.
[15] K. Suzuki, M. Sakuma , S. Hori , T. Nakazawa,, M. Nagao, M.Yonemura, M.Hirayama, R. Kanno, Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ionics, 2016. 288: p. 229-234
[16] A.K. Abay, X. Chen, D.-H. Kuo, Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants, New Journal of Chemistry, 41 (2017) 5628-5638.
[17] X. Chen, D.-H. Kuo, Nanoflower bimetal CuInOS oxysulfide catalyst for the reduction of Cr(VI) in the dark, ACS Sustainable Chemistry & Engineering, 5 (2017) 4133-4143.
[18] H. Abdullah, N.S. Gultom, D.-H. Kuo, Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction, Journal of Materials Science, 52 (2017) 6249-6264.
[19] X. Chen, D.-H. Kuo, A.D. Saragih, Z.-Y. Wu, H. Abdullah, J. Lin, The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts, Chemical Engineering Science, (2018) in press.
[20] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
[21] N.S. Gultom, H. Abdullah, D.-H. Kuo, Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution, International Journal of Hydrogen Energy, 42 (2017) 25891-25902.
[22] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal of Chemistry, 41 (2017) 12397-12406.
[23] H. Abdullah, D.-H. Kuo, Utilization of photocatalytic hydrogen evolved (Zn,Sn)(O,S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol, International Journal of Hydrogen Energy, (2018) in press.
[24] X. Chen, H. Abdullah, D.-H. Kuo, CuMnOS nanoflowers with different Cu+/Cu2+ ratios for the CO2-to-CH3OH and the CH3OH-to-H2 redox reactions, Scientific Reports, 7 (2017) 41194.
[25] X. Chen, H. Abdullah, D.-H. Kuo, H.-N. Huang, C.-C. Fang, Abiotic synthesis with the C-C bond formation in ethanol from CO2 over (Cu,M)(O,S) catalysts with M = Ni, Sn, and Co, Scientific Reports, 7 (2017) 10094.
[26] J.M. McGraw, C.S Bahn, P. Parilla, J. Perkins, D.W Readey, D. Ginley, Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes, Electrochimica Acta, 45 (1999) 187-196.
[27] A. Van der Ven, G. Ceder, Lithium diffusion in layered LixCoO2, Electrochemical and Solid-State Letters, 3 (2000) 301-304.
[28] P.E. Stallworth, J.J. Fontanella, M.C. Wintersgill, C.D. Scheidler, J.J. Immel, S.G. Greenbaum, A.S. Gozdz, NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes, Journal of Power Sources, 81-82 (1999) 739-747.
[29] Z. Deng, Y. Mo, S.-P. Ong, Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries, NPG Asia Materials, 8 (2016) e254.
[30] K. Xu, Electrolytes and interphases in Li-Ion batteries and beyond, Chemical Reviews, 114 (2014) 11503-11618.
[31] S.V. Pershina, A.A. Raskovalov, B.D. Antonov, O.G. Reznitskikh, E.G. Vovkotrub, N. N. Batalov, N.I. Kadyrova, Structure and properties of (1–x)LiPO3−xSiO2 and 50Li2O−(50–x)P2O5−x SiO2 glass-forming systems, Russian Journal of Physical Chemistry A, 90 (2016) 2194-2201.
[32] H.Y.P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Materials Research Bulletin, 13 (1978) 117-124.
[33] C. Shao, H. Liu, Z. Yu, Z. Zheng, N. Sun, C. Diao, Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method, Solid State Ionics, 287 (2016) 13-16.
[34] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nature Materials, 10 (2011) 682-686.
[35] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors, Nature Materials, 14 (2015) 1026-1031.
[36] P. Bron, S. Dehnen, B. Roling, Li10Si0.3Sn0.7P2S12 – A low-cost and low-grain-boundary-resistance lithium superionic conductor, Journal of Power Sources, 329 (2016) 530-535.
[37] P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Günne, S. Dehnen, B. Roling, Li10SnP2S12: An affordable lithium superionic conductor, Journal of the American Chemical Society, 135 (2013) 15694-15697.
[38] T. Holzmann, L.M. Schoop, M.N. Ali, I. Moudrakovski, G. Gregori, J. Maier, R.J. Cava, B.V. Lotsch, Li0.6[Li0.2Sn0.8S2] – a layered lithium superionic conductor, Energy and Environtal Science, 9 (2016) 2578-2585.
[39] X. Wang, R. Xiao, H. Li, L. Chen, Oxysulfide LiAlSO: A Lithium superionic conductor from first principles, Physical Review Letters, 118 (2017) 195901.
[40]林月微、方家振, 高安全高分子電解質, 台灣工研院材化所, (2013). https://www.materialsnet.com.tw/DocView.aspx?id=11508
[41]林月微、方家振, 鋰離子電池用高分子電解質,台灣工研院材化所, (2015). https://www.materialsnet.com.tw/DocView.aspx?id=21391
[42] K.E. Aifantis, S.A. Hackney, R.V. Kumar, High energy Density Lithium Batteries: Materials, Engineering, Applications , 1st ed., Wiley-VCH, (2010).
[43]王天佑, 鋰離子二次電池之LiMn2O4正極材料特性分析研究與合成技術探討, 國立台灣大學化學系研究所碩士學位論文, 2000.
[44] Y. Osada, J.P. Gong, Soft and wet materials: polymer gels, Advanced Materials, 10 (1998) 827-837.
[45] X. Tian, X. Jiang, Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) membranes for ethyl acetate removal from water, Journal of Hazardous Materials, 153 (2008) 128-135.
[46] A.M. Stephan, K.S. Nahm, M. Anbu Kulandainathan, G. Ravi, J. Wilson, Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries, European Polymer Journal, 42 (2006) 1728-1734.
[47] Z. Fu, H.L. Feng, X.D. Xiang, M.M. Rao, W. Wu, J.C. Luo, T.T. Chen, Q.P. Hu, A.B. Feng, W.S. Li, A novel polymer composite as cathode binder of lithium ion batteries with improved rate capability and cyclic stability, Journal of Power Sources, 261 (2014) 170-174.
[48]蘇稘翃、鄭元瑞、薛天翔、余玉正、詹德均, 穿戴式產品之可撓式全固態薄膜鋰電池, Journal of Taiwan Energy, 2 (2015) 279-292.
[49]全固態薄膜鋰電池開啟鋰電池技術發展 (2016). https://www.iner.gov.tw/index.php/2200/306-2200-160803-03.html
[50] B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson, Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, Journal of Electrochemical Society, 143 (1996) 3203-3213.
[51] 吳俊彥、廖譽凱、劉如熹、胡淑芬, 可撓式全固態薄膜鋰離子電池, 奈米通訊, 24 (2017) 8-13.
[52] C.S. Kim, S.M. Oh, Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes, Electrochimica Acta, 45 (2000) 2101-2109.
[53] W. Masayoshi, K. Motoi, N. Katsuro, S. Isao, Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application, Journal of Applied Polymer Science, 27 (1982) 4191-4198.
[54] W. Masayoshi, K. Motoi, N. Katsuro, S. Isao, Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4, Journal of Polymer Science: Polymer Physics Edition, 21 (1983) 939-948.
[55] K. Murata, S. Izuchi, Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries, Electrochimica Acta, 45 (2000) 1501-1508.
[56] A. Kuhn, T. Holzmann, J. Nuss, B.V. Lotsch, A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1-xS2 solid solutions, Journal of Materials Chemistry A, 2 (2014) 6100-6106.
[57] J.A. Brant, D.M. Massi, N.A.W. Holzwarth, J.H. MacNeil, A.P. Douvalis, T. Bakas, S.W. Martin, M.D. Gross, J.A. Aitken, Fast lithium ion conduction in Li2SnS3: Synthesis, physicochemical characterization, and electronic structure, Chemistry of Materials, 27 (2015) 189-196.
[58] T. Holzmann, L.M. Schoop, M.N. Ali, I. Moudrakovski, G. Gregori, J. Maier, R.J. Cava, B.V. Lotsch, Li0.6[Li0.2Sn0.8S2] – a layered lithium superionic conductor, Energy and Environtal Science, 9 (2016) 2578-2585.
[59] A. Kuhn, T. Holzmann, J. Nuss, B.V. Lotsch, A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1−xS2 solid solutions, Journal of Materials Chemistry A, 2 (2014) 6100-6106.
[60] J. Heo, Y. Liu, A.K. Haridas, J. Jeon, X. Zhao, K.-K. Cho, H.-J. Ahn, Y. Lee, J.-H. Ahn, carbon-coated ordered mesoporous SnO2 composite based anode material for high performance lithium-ion batteries, Journal of Nanoscience and Nanotechnology, 18 (2018) 6415-6421.
[61] C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, Journal of the American Chemical Society, 130 (2008) 2730-2731.
[62] R. de Levie, On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochimica Acta, 8 (1963) 751-780.
[63] P.L. Taberna, P. Simon, J.F. Fauvarque Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, Journal of The Electrochemical Society, 150 (2003) A292-A300.
[64] I. Uchida, H. Sato, Preparation of binder‐free, thin film LiCoO2 and Its electrochemical responses in a propylene carbonate solution, Journal of The Electrochemical Society, 142 (1995) L139-L141.
[65] 楊模樺,鋰電池材料技術發展,工業材料雜誌,2006.237:137
[66] https://www.iycr2014.org/learn/crystallography365/articles/20140409
[67] J.B. Goodeough, Y. Kim, Challenges for rechargeable Li batteries, Chemistry of Materials, 22 (2010) 587-603

無法下載圖示 全文公開日期 2023/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE