簡易檢索 / 詳目顯示

研究生: 王榆諼
Yu-Xuan Wang
論文名稱: 開發硼摻雜石墨烯量子點修飾奈米碳管作為非貴金屬電催化材料以實現高效能可攜式/穿戴式電化學感測平台之研究
Developing B-doped Graphene Quantum Dots Anchored on Carbon Nanotubes as Noble Metal-free Electrocatalysts to Achieve Highly Efficient Portable/Wearable Electrochemical Biosensors
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
王孟菊
Meng-Jiy Wang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 138
中文關鍵詞: 硼氮共摻雜石墨烯量子點奈米碳管電催化材料生物感測器穿戴式裝置可攜式裝置尿酸感測非侵入式非酵素溶氧量氧氣還原反應
外文關鍵詞: B-N codoped, Non-invasively, Dissolved oxygen
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於電子產品的蓬勃發展,使得電化學感測器應用於人體穿戴式感測裝置以及可
攜式環境監控平台逐漸受到重視,並且期盼能進一步結合無線遠距傳輸來達到遠端監控,以
實現同步整合多種生物資訊於未來備受矚目的人工智慧物聯網系統。然而,目前現有的電化
學感測器多半以貴金屬為電催化觸媒,但其成本較高且穩定性不佳,因此開發一高效且具有
高穩定性的電催化觸媒則為電化學感測器最重要的目標之一。
在人體穿戴式感測裝置中,以非侵入方式檢測人體體液中生物標記的穿戴式感測器備受
矚目,其待測物包含了乳酸、葡萄糖以及尿酸等物質,藉由穿戴式裝置提供的連續式監控將
有助於進行健康診斷來了解身體狀況,且能夠提早治療以防止病情惡化。在眾多體內待測物
中,尿酸是人體中普林經由新陳代謝而成的產物,一旦尿酸濃度過高即會引發高尿酸血症以
及痛風等疾病;因此第四章的研究目的旨在開發一種新型電催化材料透過無酵素電化學方法
來偵測汗液內的尿酸濃度以實現具長期穩定性的非侵入式穿戴式尿酸監控平台。本研究採用
兼具高導電度與電催化能力的奈米碳管為載體並導入硼摻雜石墨烯量子點作為電化學活性位
點來實現非酵素型尿酸電催化觸媒,研究結果顯示經由硼摻雜石墨烯量子點修飾之奈米碳管
於尿酸濃度範圍 0 至 50 M 之感測靈敏度(8.92±0.22 A M-1 cm-2)遠高於未經修飾之奈米碳
管(4.24±0.24 A M-1 cm-2),其主要原因在於硼摻雜石墨烯量子點除了能提供額外的電化學活
性表面積外,且經由理論計算結果可得知硼對尿酸有較佳的吸附能力,使其在尿酸氧化中亦
有較好的表現。硼摻雜石墨烯量子點修飾奈米碳管除了具有良好的選擇性,在經過 28 天的長
期操作下仍擁有 91.28%的回覆率,指出其擁有絕佳的穩定性;此外,本研究更進一步將其導
入軟性電極實現穿戴式感測裝置,在人工汗液下測試其尿酸濃度的準確度高達 98%,其靈敏
度為 35.1±1.5 A M-1 cm-2。
在可攜式環境監控平台方面,溶氧量感測為水質監測非常重要的指標之一,透過監控水
體溶氧量將有益於穩定水產養殖產值以及監測廢水處理等產業的發展。其工作機制仰賴電極
表面的氧氣還原反應進而推估水體中的氧氣濃度,使得開發一高效氧氣還原之電催化觸媒為
一大挑戰。基於第四章研究結果已知硼摻雜石墨烯量子點修飾碳材表面能大幅提升其電催化
能力,因此第五章以此材料概念為基礎來更進一步開發一種全新具有硼氮共摻雜碳材,首先
將氮摻雜至奈米碳管後再利用 π-π stacking 效應將硼摻雜石墨烯量子點吸附其表面,如此一來
便可有效降低 B-N 鍵結比例來大幅提升其氧氣還原之催化能力。從研究結果顯示出硼摻雜石
墨烯量子點修飾氮摻雜奈米碳管的氧氣還原的起始電位為 0.91 V (vs. RHE),遠高於奈米碳管
的 0.81 V (vs. RHE)。本研究進一步結合可攜式水質監測裝置搭配遠距數據傳輸技術實現連續
式即時監控溶氧平台,能將即時監測溶氧結果透過 wifi 上傳至雲端數據庫。在人造海水條件
下實際測試,其偵測溶氧量於 0 至 18 ppm 可達 0.011 mA/cm2 ppm 的高靈敏度,證實了本研究
提供了一個低成本且高效能的非貴金屬電催化材料應用於遠端線上監控溶氧量感測平台。
綜合本論文之研究結果證實硼摻雜石墨烯量子點之複合碳材確實能夠有效提高整體電催
化能力並成功應用於感測尿酸以及溶氧量等電化學感測,更重要的是具有高穩定特性與良好
電催化特性的硼摻雜石墨烯量子點複合碳材可提高穿戴式/可攜式電化學式感測裝置的可靠
性來有效實現長期連續式監控並結合遠端傳輸的人工智慧物聯網系統願景。


Wearable biosensing devices and portable environmental monitoring platforms via
electrochemical technics have attracted much attention since the widespread of electronic devices could provide useful insights into the performance and health of individuals. Moreover, it is expected to combine with wireless communication to achieve the goal of remote monitoring, realizing the prospect of artificial intelligent Internet of Things (AIoT) system. However, electrochemical biosensors rely on noble metals, which are high cost and low stability. Thus, developing highly efficient electrocatalysts to overcome the sluggish reaction rate of the reduction-oxidation reaction of analytes is a crucial issue.
Recent advances in non-invasively bioanalytical sensors have received enormous attention in the early diagnosis of a range of diseases. In the past few years, sweat is considered as the most popular choice for developing wearable devices due to lots of information in human sweat, including glucose, uric acid and urea. Uric acid (UA) is the main end product of purine in human sweat, exhibiting a high relationship with gout, hyperuricemia, and Lesch-Nyhan syndrome. Therefore,
developing a wearable device to monitor the UA levels in the sweat non-invasively has drawn enormous attention. To design the enzyme-free wearable sensor to monitor the concentration of UA in human sweat, boron-doped graphene quantum dots anchored on carbon nanotubes (BGQD/CNTs) was synthesized as noble-metal free electrocatalyst in Chapter 4. From the results, BGQD/CNTs exhibit ultra-high sensitivity of 8.92±0.22 A M-1 cm-2 for UA detection in comparison to pristine CNTs (4.24±0.24 A M-1 cm-2). Moreover, the DFT calculation indicates that the B atom could
increase the adsorption energy of UA to facilitate the following oxidation reaction. Also, BGQD/CNTs demonstrate outstanding selectivity and superior stability for 30 days with the current retention of 91.28%, suggesting that the B-GQDs could improve their electrocatalytic ability. Notably, BGQD/CNTs can be easily integrated into flexible electrodes, providing constant measurement under bending with a sensitivity of 35.1±0.15 A M-1cm-2, suggesting its potential for utilizing in enzymefree electrochemical UA wearable biosensor with reliable and stable performance.
Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record DO response quickly which the working mechanism based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, highefficient ORR electrocatalysts are urgently needed for broad applications. Based on the previous results in Chapter 4, this work attempt to fabricate a B-N co-doped electrocatalyst in Chapter 5 to further improve its electrocatalytic activity without the presence of B-N bonding. This research design a strategy to solve this problem; despite substantial efforts, this study shows a metal-free BGQD/NCNTs electrode significantly influences ORR catalytic activity due to the synergistic effect and abundant active sites. BGQD/NCNTs exhibits an excellent ORR performance in alkaline medium with onset potential of 0.91 V (vs. RHE), exceeding most previously reported GQDs-introduced
catalysts, it also outperformed the commercial electrocatalyst Pt/C in terms of methanol interference and long-term stability. Furthermore, BGQD/NCNTs exhibit ultra-high sensitivity of 0.011 mA/cm2 ppm in DO sensing in seawater. Additionally, this study measures DO using an online detection platform, accomplishing the aim of continuous monitoring via a wireless connection.The results elucidate the prepared BGQDs composites as noble metal-free electrocatalysts are inexpensive and highly efficient electrocatalysts for replacing noble-metal based electrocatalysts.
Moreover, BGQDs composites could be utilized in wearable UA biosensors and DO remote monitoring sensing platforms with reliable data, which may be capable to realize the prospect of AIoT system. Importantly, this synthetic strategy would provide novel inspiration for the fabrication of various highly efficient carbon-based electrocatalysts for diverse applications.

中文摘要.............................................................................................................................................. I Abstract............................................................................................................................................III Table of Contents...............................................................................................................................V List of Tables................................................................................................................................. VIII List of Figures.................................................................................................................................. IX Nomenclature ................................................................................................................................XIV Chapter 1 Introduction......................................................................................................................1 1.1 Overview of Biosensor.........................................................................................................1 1.1.1 Introduction of Biosensor....................................................................................................1 1.1.2 Uric Acid Detection ............................................................................................................3 1.1.3 Oxygen Dissolved Measurement ........................................................................................5 1.2 Development of Wearable Biosensor...................................................................................9 Chapter 2 Literature Review and Research Scope .......................................................................12 2.1 Overview of Graphene Quantum Dots (GQDs).......................................................................12 2.2 Overview of Electrocatalyst for ORR......................................................................................15 2.2.1 Noble-Metal Catalyst ........................................................................................................15 2.2.2 Transition Metal Catalyst..................................................................................................16 2.2.3 Carbon-Material Catalyst..................................................................................................18 2.2.4 Effect of Heteroatom-Doping ...........................................................................................19 2.3 Overview of Electrocatalyst for UA detection.........................................................................25 2.3.1 Noble-Metals and Its Nanostructure .................................................................................25 2.3.2 Transition Metal, Metal Oxides and Bimetallic Nanoparticles.........................................26 2.3.3 Conducting Carbon Nanomaterials-based and Its Derivatives.........................................27 2.3.4 Development of wearable biosensor for UA monitoring..................................................29 2.4 Motivation and Research Scope...............................................................................................31 Chapter 3 Experimental Procedure................................................................................................35 3.1 Experimental Chemicals and Instrument .................................................................................35 3.1.1 Electrochemical Analysis..................................................................................................36 ~ VI ~ 3.1.2 Rotating Ring Disk Electrode (RRDE).............................................................................41 3.1.3 Raman Spectroscopy.........................................................................................................43 3.1.4 X-Ray Diffractometer (XRD) ...........................................................................................44 3.1.5 Field Emission-Scanning Electron Microscopy (FE-SEM)..............................................45 3.1.6 Transmission Electron Microscope (TEM).......................................................................47 3.1.7 Energy-dispersive X-ray Spectroscopy (EDX).................................................................48 3.1.8 X-ray Photoelectron Spectroscopy (XPS).........................................................................49 3.1.9 Photoluminescence Spectroscopy (PL).............................................................................50 3.2 Experimental Materials............................................................................................................52 3.3 Experimental Procedure...........................................................................................................53 3.3.1 Preparation of Graphene Quantum Dots (GQDs).............................................................53 3.3.2 Synthesis of Boron-doped Graphene Quantum Dots (B-GQDs)......................................53 3.3.3 Preparation of GQD/CNTs, BGQD/CNTs and BGQD/NCNTs........................................53 3.3.4 Synthesis of Nitrogen-doped Carbon Nanotubes (N-CNTs).............................................53 3.3.5 Preparation of PBS and Artificial Sweat...........................................................................54 3.3.6 Modification of the BGQD/CNTs electrodes....................................................................54 3.3.7 Electrochemical Measurement..........................................................................................54 Chapter 4 Boron-doped Graphene Quantum Dots Anchored on Carbon Nanotubes as a Noble Metal-free Electrocatalyst of Uric Acid Detection for Wearable Human Sweat Sensor ...........57 4.1 Motivation and Conceptual Design....................................................................................57 4.2 Results and Discussion.............................................................................................................60 4.2.1 Characterization of BGQDs..............................................................................................60 4.2.2 Characterization of BGQD/CNTs.....................................................................................63 4.2.3 Electrocatalytic activities for BGQD/CNTs toward UA oxidation...................................66 4.2.4 LOD, selectivity, stability, and real sample measurement for BGQD/CNTs....................72 4.2.5 BGQD/CNTs modified wearable electrode for UA monitoring .......................................76 4.3 Summary ..................................................................................................................................79 Chapter 5 Boron-doped Graphene Quantum Dots Anchored on Nitrogen-doped Carbon Nanotubes as a Noble Metal-free Highly-Efficient Electrocatalyst for Biosensing Dissolved Oxygen...............................................................................................................................................80 5.1 Motivation and Conceptual Design..........................................................................................80 5.2 Results and Discussion.............................................................................................................83 5.2.1 Characterization of BGQD/NCNTs ..................................................................................83 ~ VII ~ 5.2.2 ORR Performance for BGQD/NCNTs..............................................................................87 5.2.3 BGQD/NCNTs modified electrode for DO measurements...............................................91 5.2.4 DO wireless online monitoring.........................................................................................94 5.3 Summary ..................................................................................................................................98 Chapter 6 Conclusion and Suggestion ...........................................................................................99 6.1 Conclusion ...............................................................................................................................99 6.2 Suggestions and Prospects.....................................................................................................100 Chapter 7 Reference ......................................................................................................................103 Appendix Curriculum Vitae.......................................................................................................... 117

[1] J. Kim, A.S. Campbell, B.E.F. De Ávila, J. Wang, Wearable Biosensors for Healthcare
Monitoring, Nature Biotechnology, 2019, 37, 389-406.
[2] P. Li, G.H. Lee, S.Y. Kim, S.Y. Kwon, H.R. Kim, S. Park, From Diagnosis to Treatment: Recent
Advances in Patient-Friendly Biosensors and Implantable Devices, ACS Nano, 2021, 15 1960-
2004.
[3] P. Mehrotra, Biosensors and their Applications - A Review, Journal of Oral Biology and
Craniofacial Research, 2016, 6, 153-159.
[4] A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. Al Hariri, Y.K. Lee, A.A.
Jaffa, Recent Advances in Application of Biosensors in Tissue Engineering, BioMed Research
International, 2014, 307519-307519.
[5] S. Corrie, J. Coffey, J. Islam, K. Markey, M. Kendall, Blood, Sweat, and Tears: Developing
Clinically Relevant Protein Biosensors for Integrated Body Fluid Analysis, Analyst, 2015, 140,
4350-4364.
[6] E.H. Yoo, S.Y. Lee, Glucose Biosensors: an Overview of Use in Clinical Practice, Sensors, 2010,
10, 4558-4576.
[7] M.S. Abdel-latif, A.A. Suleiman, G.G. Guilbault, Enzyme-Based Fiber Optic Sensor for Glucose
Determination, Analytical Letters, 1988, 21, 943-951.
[8] M.D. Ward, D.A. Buttry, In Situ Interfacial Mass Detection with Piezoelectric Transducers,
Science, 1990, 249, 1000-1007.
[9] J. Ngeh-Ngwainbi, A.A. Suleiman, G.G. Guilbault, Piezoelectric Crystal Biosensors, Biosensors
& Bioelectronics, 1990, 5, 13-26.
[10] P.I. Hilditch, M.J. Green, Disposable Electrochemical Biosensors, Analyst, 1991, 116, 1217-1220.
[11] J.E. Frew, H.A.O. Hill, Electrochemical Biosensors, Analytical Chemistry, 1987, 59, 933A-944A.
[12]M. Sebastian Mannoor, H. Tao, J. Clayton, A. Sengupta, D. Kaplan, R. Naik, N. Verma, F.
Omenetto, M. McAlpine, Corrigendum: Graphene-based Wireless Bacteria Detection on Tooth
Enamel, Nature Communications, 2012, 3, 763.
~ 104 ~
CHAPTER 7
[13] M. Senior, Novartis Signs up for Google Smart Lens, Nature Biotechnology, 2014, 32, 856-856.
[14]W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H.
Shiraki, D. Kiriya, D.H. Lien, G.A. Brooks, R.W. Davis, A. Javey, Fully Integrated Wearable
Sensor Arrays for Multiplexed in situ Perspiration Analysis, Nature, 2016, 529, 509-514.
[15]I. Jeerapan, J.R. Sempionatto, A. Pavinatto, J.M. You, J. Wang, Stretchable Biofuel Cells as
Wearable Textile-based Self-powered Sensors, Journal of Materials Chemistry A, 2016, 4,
18342-18353.
[16]S. Ye, S. Feng, L. Huang, S. Bian, Recent Progress in Wearable Biosensors: From Healthcare
Monitoring to Sports Analytics, Biosensors, 2020, 10, 205.
[17]M. Falk, C. Psotta, S. Cirovic, S. Shleev, Non-invasive Electrochemical Biosensors Operating in
Human Physiological Fluids, Sensors, 2020, 20, 6352.
[18]F. Criscuolo, I. Ny Hanitra, S. Aiassa, I. Taurino, N. Oliva, S. Carrara, G. De Micheli, Wearable
Multifunctional Sweat-sensing System for Efficient Healthcare Monitoring, Sensors and
Actuators B: Chemical, 2021, 328, 129017.
[19]R. Hafez, T. Abdel-Rahman, R. Naguib, A Review on Uric Acid in Plants and Microorganisms:
Biological Applications and Genetics, Journal of Advanced Research, 2017, 8, 475-486.
[20]J.J. Piedras, R.B. Dominguez, J.M. Gutierrez, Electrochemical Biosensor Development for Uric
Acid Detection, ECS Transactions, 2021, 101, 19-24.
[21]C.T. Huang, M.L. Chen, L.L. Huang, I.F. Mao, Uric Acid and Urea in Human Sweat, The Chinese
Journal of Physiology, 2002, 45, 109-115.
[22]Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T.K.
Hsiai, Z. Li, W. Gao, A Laser-engraved Wearable Sensor for Sensitive Detection of Uric Acid
and Tyrosine in Sweat, Nature Biotechnology, 2020, 38, 217-224.
[23]P.E. Erden, E. Kılıç, A Review of Enzymatic Uric Acid Biosensors Based on Amperometric
Detection, Talanta, 2013, 107, 312-323.
[24] Q. Wang, X. Wen, J. Kong, Recent Progress on Uric Acid Detection: A Review, Critical Reviews
in Analytical Chemistry, 2020, 50, 359-375.
[25]K.T. Tran-Ngoc, N.T. Dinh, T.H. Nguyen, A.J. Roem, J.W. Schrama, J.A.J. Verreth, Interaction
~ 105 ~
CHAPTER 7
between Dissolved Oxygen Concentration and Diet Composition on Growth, Digestibility and
Intestinal Health of Nile Tilapia (Oreochromis Niloticus), Aquaculture, 2016, 462, 101-108.
[26]Y. Wei, Y. Jiao, D. An, D. Li, W. Li, Q. Wei, Review of Dissolved Oxygen Detection Technology:
From Laboratory Analysis to Online Intelligent Detection, Sensors, 2019, 19, 3995.
[27]S.S. Chong, A.R.A. Aziz, S.W. Harun, Fibre Optic Sensors for Selected Wastewater
Characteristics, Sensors, 2013, 13, 8640-8668.
[28]C. Niu, Y. Zhang, Y. Zhou, K. Shi, X. Liu, B. Qin, The Potential Applications of Real-Time
Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a
Chromophoric Dissolved Organic Matter Fluorescence Sensor, Sensors, 2014, 14, 11580-11594.
[29]J. Wang, P. Jin, P.L. Bishop, F. Li, Upgrade of Three Municipal Wastewater Treatment Lagoons
Using a High Surface Area Media, Frontiers of Environmental Science & Engineering, 2012, 6,
288-293.
[30]J.H. Carpenter, The Accuracy of the Winkler Method for Dissolved Oxygen Analysis, Limnology
and Oceanography, 1965, 10, 135-140.
[31]H. Tai, Y. Yang, S. Liu, D. Li, A Review of Measurement Methods of Dissolved Oxygen in Water,
Computer and Computing Technologies in Agriculture V, 2012, 569-576.
[32]Y. Zhao, L. Sun, M. Li, The Research about Detection of Dissolved Oxygen in Water,
International Conference on Information Engineering and Computer Science, 2009, 1-4.
[33]R.T. Wilkin, M.S. McNeil, C.J. Adair, J.T. Wilson, Field Measurement of Dissolved Oxygen: A
Comparison of Methods, Groundwater Monitoring & Remediation, 2001, 21, 124-132.
[34]N. Shehata, M. Azab, I. Kandas, K. Meehan, Nano-Enriched and Autonomous Sensing
Framework for Dissolved Oxygen, Sensors, 2015, 15, 20193-20203.
[35]N. Trivellin, D. Barbisan, D. Badocco, P. Pastore, G. Meneghesso, M. Meneghini, E. Zanoni, G.
Belgioioso, A. Cenedese, Study and Development of a Fluorescence Based Sensor System for
Monitoring Oxygen in Wine Production: The WOW Project, Sensors, 18, 1130.
[36]D. Lin, C. Hu, H. Chen, J. Qu, L. Dai, Microporous N,P-Codoped Graphitic Nanosheets as an
Efficient Electrocatalyst for Oxygen Reduction in Whole pH Range for Energy Conversion and
Biosensing Dissolved Oxygen, Chemistry – A European Journal, 2018, 24, 18487-18493.
~ 106 ~
CHAPTER 7
[37]C. Song, J. Zhang, Electrocatalytic Oxygen Reduction Reaction, PEM Fuel Cell Electrocatalysts
and Catalyst Layers: Fundamentals and Applications, Springer London, 2008, 89-134.
[38]K. Kakaei, M.D. Esrafili, A. Ehsani, Oxygen Reduction Reaction, Interface Science and
Technology, Elsevier, 2019, 203-252.
[39]C. Santoro, A. Serov, K. Artyushkova, P. Atanassov, Platinum Group Metal-free Oxygen
Reduction Electrocatalysts Used in Neutral Electrolytes for Bioelectrochemical Reactor
Applications, Current Opinion in Electrochemistry, 2020, 23, 106-113.
[40]D. Mukherjee, S. Sampath, Two-Dimensional, Layered Materials as Catalysts for Oxygen
Reduction Reaction, World Scientific, 2017, 103-136.
[41]T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel Slopes from a Microkinetic
Analysis of Aqueous Electrocatalysis for Energy Conversion, Scientific Reports, 2015, 5, 13801.
[42]C.C. Dos Santos, G.N. Lucena, G.C. Pinto, M.J. Júnior, R.F.C. Marques, Advances and Current
Challenges in Non-invasive Wearable Sensors and Wearable Biosensors—A mini-review,
Medical Device & Sensors, 2021, 4, 10130.
[43]J.M. Peake, G. Kerr, J.P. Sullivan, A Critical Review of Consumer Wearables, Mobile
Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in
Physically Active Populations, Frontiers in Physiology, 2018, 9, 743.
[44]S. Gong, W. Cheng, One-Dimensional Nanomaterials for Soft Electronics, Advanced Electronic
Materials, 2017, 3, 1600314.
[45]J. Jung, H. Cho, R. Yuksel, D. Kim, H. Lee, J. Kwon, P. Lee, J. Yeo, S. Hong, H.E. Unalan, S.
Han, S.H. Ko, Stretchable/flexible Silver Nanowire Electrodes for Energy Device Applications,
Nanoscale, 2019, 11, 20356-20378.
[46]E. Garnett, L. Mai, P. Yang, Introduction: 1D Nanomaterials/Nanowires, Chemical Reviews, 2019,
119, 8955-8957.
[47]S. Benight, C. Wang, J. Tok, Z. Bao, Stretchable and Self-healing Polymers and Devices for
Electronic Skin, Progress in Polymer Science, 2013, 38, 1961–1977.
[48]Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent Advances on
Graphene Quantum Dots: From Chemistry and Physics to Applications, Advanced Materials,
~ 107 ~
CHAPTER 7
2019, 31, 1808283.
[49]N. Shaari, S.K. Kamarudin, R. Bahru, Carbon and Graphene Quantum Dots in Fuel Cell
Application: An Overview, International Journal of Energy Research, 2021, 45, 1396-1424.
[50]A. Kalluri, D. Debnath, B. Dharmadhikari, P. Patra, Graphene Quantum Dots: Synthesis and
Applications, Academic Press, 2018, 335-354.
[51]J. Zhu, Y. Dong, S. Zhang, Z. Fan, Application of Carbon-/Graphene Quantum Dots for
Supercapacitors, Acta Physico-Chimica Sinica, 2020, 36, 1903052.
[52]X. Duan, K. O'Donnell, H. Sun, Y. Wang, S. Wang, Sulfur and Nitrogen Co‐Doped Graphene for
Metal‐Free Catalytic Oxidation Reactions, Small, 2015, 11, 3035-3035.
[53]W. Zhang, X. Zhang, X. Dong, H. Ma, G. Wang, Synthesis of N-Doped Graphene Oxide
Quantum Dots with the Internal P-N Heterojunction and Its Photocatalytic Performance under
Visible Light Illumination, Journal of Advanced Oxidation Technologies, 2018, 21, .
[54]J. Liu, R. Wang, Z. Chen, N. Hu, X. Chaohe, Z. Shen, Nanocarbon Based Electrocatalysts for
Rechargeable Aqueous Li/Zn‐Air Batteries, ChemElectroChem, 2018, 5, 1745-1763.
[55]A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding Catalytic Activity Trends in
the Oxygen Reduction Reaction, Chemical Reviews, 2018, 118, 2302-2312.
[56]Y. Cao, J. Zhang, Y. Yang, Z. Huang, N.V. Long, M. Nogami, Controlled Synthesis of Porous
Platinum Nanostructures for Catalytic Applications, Journal of Nanoscience and
Nanotechnology, 2014, 14, 1194-1208.
[57]X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Advanced Electrocatalysts for the Oxygen Reduction
Reaction in Energy Conversion Technologies, Joule, 2020, 4, 45-68.
[58]H. Zhong, C.A. Campos-Roldán, Y. Zhao, S. Zhang, Y. Feng, N. Alonso-Vante, Recent Advances
of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution
Reaction, Catalysts, 2018, 8, 559.
[59]H. Zhao, C. Zhang, H. Li, J. Fang, One-dimensional Nanomaterial Supported Metal Single-atom
Electrocatalysts: Synthesis, Characterization, and Applications, Nano Select, 2021, 1-40.
[60]X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom Catalysts: A New Frontier in
Heterogeneous Catalysis, Accounts of Chemical Research, 2013, 46, 1740-1748.
~ 108 ~
CHAPTER 7
[61]Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang, Atomic Fe Dispersed on N-Doped Carbon
Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction, Advanced
Materials, 2019, 31, 1806312.
[62]W. Li, C. Han, K. Zhang, S. Chou, S. Dou, Strategies for Boosting Carbon Electrocatalysts for
the Oxygen Reduction Reaction in Non-aqueous Metal–air Battery Systems, Journal of
Materials Chemistry, 2021, 9, 6671-6693.
[63]M. Zhou, H.-L. Wang, S. Guo, Towards High-efficiency Nanoelectrocatalysts for Oxygen
Reduction through Engineering Advanced Carbon Nanomaterials, Chemical Society Reviews,
2016, 45, 1273-1307.
[64]X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically Enhanced Activity of
Graphene Quantum dot/Multi-walled Carbon Nanotube Composites as Metal-free Catalysts for
Oxygen Reduction Reaction, Nanoscale, 2014, 6, 2603-2607.
[65]Z. Yang, H. Nie, X.a. Chen, X. Chen, S. Huang, Recent Progress in Doped Carbon Nanomaterials
as Effective Cathode Catalysts for Fuel Cell Oxygen Reduction Reaction, Journal of Power
Sources, 2013, 236, 238-249.
[66]R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A Review of Oxygen
Reduction Mechanisms for Metal-free Carbon-based Electrocatalysts, Computational Materials,
2019, 5, 78.
[67]L. Yang, J. Shui, L. Du, Y. Shao, J. Liu, L. Dai, Z. Hu, Carbon-Based Metal-Free ORR
Electrocatalysts for Fuel Cells: Past, Present, and Future, Advanced Materials, 2019, 31, 1804799.
[68]X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, H. Yu, Electronic Synergism
of Pyridinic- and Graphitic-nitrogen on N-doped Carbons for the Oxygen Reduction Reaction,
Chemical Science,2019, 10, 1589-1596.
[69]F. Gao, G.L. Zhao, S. Yang, J.J. Spivey, Nitrogen-doped Fullerene as a Potential Catalyst for
Hydrogen Fuel Cells, Journal of Analytical and Applied Chemistry, 2013, 135, 3315-3318.
[70]S. Liu, G. li, Y. Gao, Z. Xiao, J. Zhang, Q. Wang, X. Zhang, L. Wang, Doping Carbon Nanotubes
by N, S, and B for Electrocatalytic Oxygen Reduction: a Systematic Investigation on Single,
Double, and Triple Doped Modes, Catalysis Science & Technology, 2017, 7, 4007-4016.
~ 109 ~
CHAPTER 7
[71]A. Shah, A. Satti, H. Subhan, A. Munir, F. Iftikhar, M. Akbar, Heteroatom Doped Carbonaceous
Electrode Materials for High Performance Energy Storage Devices, Sustainable Energy & Fuels,
2018, 2, 1398-1429.
[72]N.E. Benti, G.A. Tiruye, Y.S. Mekonnen, Boron and Pyridinic Nitrogen-doped Graphene as
Potential Catalysts for Rechargeable Non-aqueous Sodium–Air Batteries, RSC Advances, 2020,
10, 21387-21398.
[73]Z.H. Sheng, H.L. Gao, W.J. Bao, F.B. Wang, X.H. Xia, Synthesis of Boron doped Graphene for
Oxygen Reduction Reaction in Fuel Cells, Journal of Materials Chemistry, 2012, 22, 390-395.
[74]X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin, H. Wang, P. Strasser, R. Yang, X. Chen, G. Wu, N-,
P-, and S-doped Graphene-like Carbon Catalysts Derived from Onium Salts with Enhanced
Oxygen Chemisorption for Zn-Air Battery Cathodes, Applied Catalysis B: Environmental, 2019,
241, 442-451.
[75]Z.W. Liu, F. Peng, H.J. Wang, H. Yu, W.X. Zheng, J. Yang, Phosphorus-Doped Graphite Layers
with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium, Angewandte
Chemie International Edition, 2011, 50, 3257-3261.
[76]S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J.B. Baek, L. Dai, BCN Graphene as Efficient
Metal-Free Electrocatalyst for the Oxygen Reduction Reaction, Angewandte Chemie
International Edition, 2102, 51, 4209-4212.
[77]Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, Can Boron and
Nitrogen Codoping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?,
Journal of the American Chemical Society, 2013, 135, 1201-1204.
[78]J.i. Ozaki, N. Kimura, T. Anahara, A. Oya, Preparation and Oxygen Reduction Activity of BNdoped Carbons, Carbon, 2007, 45, 1847-1853.
[79]L. Yang, Y. Zhao, S. Chen, Q. Wu, X. Wang, Z. Hu, A Mini Review on Carbon-based Metal-free
Electrocatalysts for Oxygen Reduction Reaction, Chinese Journal of Catalysis, 2013, 34, 1986-
1991.
[80]P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble Metals on the Nanoscale: Optical and
Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,
~ 110 ~
CHAPTER 7
Accounts of chemical research, 2008, 41, 1578-1586.
[81]G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa, P.V. Baptista, Noble
Metal Nanoparticles for Biosensing Applications, Sensors, 2012, 12, 1657-1687.
[82]J. Wang, B. Yang, J. Zhong, B. Yan, K. Zhang, C. Zhai, Y. Shiraishi, Y. Du, P. Yang, Dopamine
and Uric Acid Electrochemical Sensor Based on a Glassy Carbon Electrode Modified with Cubic
Pd and Reduced Graphene Oxide Nanocomposite, Journal of Colloid and Interface Science,
2017, 497, 172-180.
[83]X. Zhang, L.X. Ma, Y.C. Zhang, Electrodeposition of Platinum Nanosheets on C60 Decorated
Glassy Carbon Electrode as a Stable Electrochemical Biosensor for Simultaneous Detection of
Ascorbic Acid, Dopamine and Uric Acid, Electrochimica Acta, 2015, 177, 118-127.
[84]B. Hanssen, S. Siraj, D. Wong, Recent Strategies to Minimise Fouling in Electrochemical
Detection Systems, Reviews in Analytical Chemistry,2016, 35, 1-28.
[85]W. Chen, S. Li, J. Wang, K. Sun, Y. Si, Metal and Metal-oxide Nanozymes: Bioenzymatic
Characteristics, Catalytic Mechanism, and Eco-environmental Applications, Nanoscale, 2019, 11,
15783-15793.
[86]M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S.
Varma, Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis, Chemical
Reviews, 2016, 116, 3722-3811.
[87]M. Cui, X. Meng, Overview of Transition Metal-based Composite Materials for Supercapacitor
Electrodes, Nanoscale Advances, 2020, 2, 5516-5528.
[88]X. Zhang, Y.C. Zhang, L.X. Ma, One-pot Facile Fabrication of Graphene-Zinc Oxide Composite
and its Enhanced Sensitivity for Simultaneous Electrochemical Detection of Ascorbic acid,
Dopamine and Uric Acid, Sensors and Actuators B: Chemical, 2016, 227, 488-496.
[89]L. Fu, Y. Zheng, A. Wang, W. Cai, B. Deng, Z. Zhang, An Electrochemical Sensor Based on
Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid
Detection, Arabian Journal for Science and Engineering, 2016, 41, 135-141.
[90]H.S. Hwang, J.W. Jeong, Y.A. Kim, M. Chang, Carbon Nanomaterials as Versatile Platforms for
Biosensing Applications, Micromachines, 2020, 11, 814.
~ 111 ~
CHAPTER 7
[91]Z. Shi, X. Li, L. Yu, X. Wu, J. Wu, C. Guo, C.M. Li, Atomic Matching Catalysis to Realize a
Highly Selective and Sensitive Biomimetic Uric Acid Sensor, Biosensors and Bioelectronics,
2019, 141, 111421.
[92]P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene Quantum Dots from Chemistry to Applications,
Materials Today Chemistry, 1028, 10, 221-258.
[93]K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, SimultaneousDetermination of
Ascorbic Acid, Dopamine, and Uric Acid Using Graphene Quantum Dots/Ionic Liquid Modified
Screen-Printed Carbon Electrode, Sensors and Actuators B: Chemical, 2020, 314, 128059.
[94]T.J. Li, M.H. Yeh, W.H. Chiang, Y.S. Li, G.L. Chen, Y.A. Leu, T.C. Tien, S.C. Lo, L.Y. Lin, J.J.
Lin, K.C. Ho, Boron-doped Carbon Nanotubes with Uniform Boron Doping and Tunable Dopant
Functionalities as an Efficient Electrocatalyst for Dopamine Oxidation Reaction, Sensors and
Actuators B: Chemical, 2017, 248, 288-297.
[95]D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes, C.A. Zorman, C.K. Drummond,
Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete,
Digital Medicine, 2019, 2, 72-72.
[96]S. RoyChoudhury, Y. Umasankar, J. Jaller, I. Herskovitz, J. Mervis, E. Darwin, P.A. Hirt, L.J.
Borda, H.A. Lev-Tov, R. Kirsner, Continuous Monitoring of Wound Healing Using a Wearable
Enzymatic Uric Acid Biosensor, Journal of the Electrochemical Society, 2018, 165, B3168-
B3175.
[97]M. Fernandez, Z. Upton, H. Edwards, K. Finlayson, G. Shooter, Elevated Uric Acid Correlates
with Wound Severity, International Wound Journal, 2011, 9, 139-149.
[98]A.J. Bard, L.R.J.E.M. Faulkner, Electrochemical Methods: Fundamentals and applications, Wiley,
2001, 2, 580-632.
[99]K. Wijeratne, Conducting Polymer Electrodes for Thermogalvanic Cells, Linkoping University,
2018.
[100]J. Colomer-Farrarons, P. Miribel-Català, A.I. Rodríguez-Villarreal, J. Samitier, Portable BioDevices: Design of Electrochemical Instruments from Miniaturized to Implantable Devices,
IntechOpen, 2011.
~ 112 ~
CHAPTER 7
[101] P. Puthongkham, B.J. Venton, Recent Advances in Fast-scan Cyclic Voltammetry, Analyst, 2020,
145, 1087-1102.
[102] S. Bilal, Cyclic Voltammetry, Encyclopedia of Applied Electrochemistry, Springer, 2014, 285-
289.
[103] P.T. Kissinger, Laboratory Techniques in Electroanalytical Chemistry, Dekker, 1996.
[104] K.F. Drake, R.P. Van Duyne, A.M. Bond, Cyclic Differential Pulse Voltammetry: A Versatile
Instrumental Approach Using a Computerized System, Journal of Electroanalytical Chemistry
and Interfacial Electrochemistry, 1978, 89, 231-246.
[105] A. Lasia, A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer,
2014.
[106] T.J. Hirt, H.B. Palmer, Quantitative Determination of Carbon Suboxide by Gas
Chromatography, Analytical Chemistry, 1962, 34, 164-164.
[107] K. Mayrhofer, Oxygen Reduction and Carbon Monoxide Oxidation on Pt - from Model to Real
Systems for Fuel Cell Electrocatalysis, 2006.
[108]J. Wang, C.X. Zhao, J.N. Liu, D. Ren, B.Q. Li, J.Q. Huang, Q. Zhang, Quantitative Kinetic
Analysis on Oxygen Reduction Reaction: A Perspective, Nano Materials Science, 2021.
[109] Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu, J.Y. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Y. Liu, H.
Wang, Highly Active and Selective Oxygen Reduction to H2O2 on Boron-doped Carbon for
High Production Rates, Nature communications, 2021, 12, 4225.
[110] T. Schmid, P. Dariz, Raman Microspectroscopic Imaging of Binder Remnants in Historical
Mortars Reveals Processing Conditions, Heritage, 2019, 2, 1662-1683.
[111] A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein, X-ray Diffraction: Instrumentation and
Applications, Critical Reviews in Analytical Chemistry, 2015, 45, 289-299.
[112] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS Sample Preparation
Techniques for Cervical Cells in Developing Computer-aided Screening System based on FESEM/EDX, TheScientificWorldJournal, 2014, 289817.
[113] V.D. Hodoroaba, Energy-Dispersive X-ray Spectroscopy (EDS), Characterization of
Nanoparticles, 2020, 397-417.
~ 113 ~
CHAPTER 7
[114] M. Linford, Introduction to Surface and Material Analysis and to Various Analytical Techniques,
Vacuum Technology & Coating, 2014, 27-33.
[115] T. Van Tam, S.G. Kang, K.F. Babu, E.S. Oh, S.G. Lee, W.M. Choi, Synthesis of B-doped
Graphene Quantum Dots as a Metal-free Electrocatalyst for the Oxygen Reduction Reaction,
Journal of Materials Chemistry A, 2017, 5, 10537-10543.
[116] R.F. Hamilton, J.C. Xiang, M. Li, I. Ka, F. Yang, D. Ma, D.W. Porter, N. Wu, A. Holian,
Purification and Sidewall Functionalization of Multiwalled Carbon Nanotubes and Resulting
Bioactivity in Two Macrophage Models, Inhal Toxicol, 2013, 25, 199-210.
[117] A. Sharma, M. Badea, S. Tiwari, J.L. Marty, Wearable Biosensors: An Alternative and Practical
Approach in Healthcare and Disease Monitoring, Molecules, 2021, 26, 748.
[118] B.W. An, J.H. Shin, S.Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.G. Park, E. Cho, S. Jo,
J.U. Park, Smart Sensor Systems for Wearable Electronic Devices, Polymers, 2017, 9, 303.
[119] D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes, C.A. Zorman, C.K. Drummond,
Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete, NPJ
Digital Medicine, 2019, 2, 72.
[120] N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to Biosensors, Essays in Biochemistry,
2016, 60, 1-8.
[121] B. Piro, G. Mattana, V. Noël, Recent Advances in Skin Chemical Sensors, Sensors, 2019, 19,
4376.
[122] S. Lakard, I.A. Pavel, B. Lakard, Electrochemical Biosensing of Dopamine Neurotransmitter:
A Review, Biosensor, 2021, 11, 179.
[123] E.J. Askins, M.R. Zoric, M. Li, Z. Luo, K. Amine, K.D. Glusac, Toward a Mechanistic
Understanding of Electrocatalytic Nanocarbon, Nature communications, 2021, 12, 3288.
[124] X. Hai, Q.X. Mao, W.J. Wang, X.F. Wang, X.W. Chen, J.H. Wang, An Acid-free Microwave
Approach to Prepare Highly Luminescent Boron-doped Graphene Quantum Dots for Cell
Imaging, Journal of materials chemistry. B, 2105, 3, 9109-9114.
[125] H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, Gold NanoparticleDecorated MoS2 Nanosheets for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric
~ 114 ~
CHAPTER 7
Acid, RSC Advances, 2014, 4, 27625-27629.
[126] L. Ma, Q. Zhang, C. Wu, Y. Zhang, L. Zeng, PtNi Bimetallic Nanoparticles Loaded MoS2
Nanosheets: Preparation and Electrochemical Sensing Application for the Detection of
Dopamine and Uric Acid, Analytical Chimca Acta, 2019, 1055, 17-25.
[127] S. Li, Y. Ma, Y. Liu, G. Xin, M. Wang, Z. Zhang, Z. Liu, Electrochemical Sensor Based on a
Three Dimensional Nanostructured MoS2 Nanosphere-PANI/reduced Graphene Oxide
Composite for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid, RSC
Advances, 2019, 9 2997-3003.
[128] L. Durai, C.Y. Kong, S. Badhulika, One-step Solvothermal Synthesis of Nanoflake-nanorod
WS2 Hybrid for Non-enzymatic Detection of Uric Acid and Quercetin in Blood Serum,
Materials Science and Engineering: C, 2020, 107, 110217.
[129] A. Gutiérrez, M.L. Lozano, L. Galicia, N.F. Ferreyra, G.A. Rivas, Electrochemical Sensing of
Uric Acid Using Glassy Carbon Modified with Multiwall Carbon Nanotubes Dispersed in
Polyethylenimine, Electroanalysis, 2014, 26, 2191-2196.
[130] B.J. Matsoso, B.K. Mutuma, C. Billing, K. Ranganathan, T. Lerotholi, G. Jones, N.J. Coville,
Investigating the Electrochemical Behaviour and Detection of Uric Acid on ITO Electrodes
Modified with Differently Doped N-graphene Films, Journal of Electroanalytical Chemistry,
2019, 833 160-168.
[131] S. Thiagarajan, S.M. Chen, Preparation and Characterization of PtAu Hybrid Film Modified
Eelectrodes and Their Use in Simultaneous Determination of Dopamine, Ascorbic Acid and
Uric Acid, Talanta, 2007, 74, 212-222.
[132] H. Yao, Y. Sun, X. Lin, Y. Tang, L. Huang, Electrochemical Characterization of
Poly(eriochrome black) Modified Glassy Carbon Electrode and its Application to Simultaneous
Determination of Dopamine, Ascorbic Acid and Uric Acid, Electrochimica Acta, 2007, 52,
6165-6171.
[133] T.K. Aparna, R. Sivasubramanian, M.A. Dar, One-pot Synthesis of Au-Cu2O/rGO
Nanocomposite Based Electrochemical Sensor for Selective and Simultaneous Detection of
Dopamine and Uric Acid, Journal of Alloys and Compounds, 2018, 741, 1130-1141.
~ 115 ~
CHAPTER 7
[134] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z.
Jiang, E. Ringe, B.I. Yakobson, J. Dong, D. Chen, J.M. Tour, Single-Atomic Ruthenium
Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic
Medium, ACS Nano, 2017, 11, 6930-6941.
[135] S. Zhang, W. Su, X. Wang, K. Li, Y. Li, Bimetallic Metal-organic Frameworks Derived Cobalt
Nanoparticles Embedded in Nitrogen-doped Carbon Nanotube Nanopolyhedra as Advanced
Electrocatalyst for High-performance of Activated Carbon Air-cathode Microbial Fuel Cell,
Biosensors and Bioelectronics, 2019, 127, 181-187.
[136] T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, C. Su, B, N Codoped and Defect-Rich
Nanocarbon Material as a Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and
Evolution Reactions, Advanced Science, 2018, 5, 1800036.
[137] Q. Li, S. Zhang, L. Dai, L.S. Li, Nitrogen-Doped Colloidal Graphene Quantum Dots and Their
Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction, Journal of the
American Chemical Society, 2012, 134, 18932-18935.
[138] B. Zhang, C. Xiao, Y. Xiang, B. Dong, S. Ding, Y. Tang, Nitrogen-Doped Graphene Quantum
Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen
Reduction Reaction, ChemElectroChem, 2016, 3, 864-870.
[139] T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, Facile Synthesis of Defect-rich
Nitrogen and Sulfur Co-doped Graphene Quantum Dots as Metal-free Electrocatalyst for the
Oxygen Reduction Reaction, Journal of Alloys and Compounds, 2019, 792, 844-850.
[140] W. Liu, B. Ren, W. Zhang, M. Zhang, G. Li, M. Xiao, J. Zhu, A. Yu, L. Ricardez-Sandoval, Z.
Chen, Defect-Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo2S4
Nanoarray as High-Efficiency Bifunctional Catalyst for Flexible Zn-Air Battery, Small, 2019,
15, 1903610.
[141] H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, Graphene Quantum Dots Supported
by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction,
Journal of the American Chemical Society, 2105, 137, 7588-7591.
[142] S. Zhong, L. Zhou, L. Wu, L. Tang, Q. He, J. Ahmed, Nitrogen- and Boron-co-doped Core–
~ 116 ~
CHAPTER 7
shell Carbon Nanoparticles as Efficient Metal-free Catalysts for Oxygen Reduction Reactions
in Microbial Fuel Cells, Journal of Power Sources, 2014, 272 344-350.
[143] H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L.G. Samuel, P.M. Ajayan, J.M. Tour, Boronand Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient
Electrocatalysts for Oxygen Reduction, ACS Nano, 2014, 8, 10837-10843.
[144] A. Zebda, C. Innocent, L. Renaud, M. Cretin, F. Pichot, R. Ferrigno, S. Tingry, Enzyme-Based
Microfluidic Biofuel Cell to Generate Micropower, 2011.
[145] G. Slaughter, Enzymatic Glucose Biofuel Cell and its Application, Journal of Biochips and
Tissue Chips, 2015, 5.
[146] C. Wang, E. Shim, H.K. Chang, N. Lee, H.R. Kim, J. Park, Sustainable and High-power
Wearable Glucose Biofuel Cell Using Long-term and High-speed Flow in Sportswear Fabrics,
Biosensors & Bioelectronics, 2020, 169, 112652.
[147] X. Li, Q. Feng, K. Lu, J. Huang, Y. Zhang, Y. Hou, H. Qiao, D. Li, Q. Wei, Encapsulating
Enzyme into Metal-organic Framework During in-situ Growth on Cellulose Acetate Nanofibers
as Self-powered Glucose Biosensor, Biosensors & Bioelectronics, 2021, 171, 112690.

無法下載圖示 全文公開日期 2026/08/20 (校內網路)
全文公開日期 2026/08/20 (校外網路)
全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE