簡易檢索 / 詳目顯示

研究生: 羅元斌
Yuan-pin Lo
論文名稱: 奈米碳管/氧化銦複合薄膜酸鹼感測元件
The pH sensor based on carbon nanotube/indium oxide composite thin film
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
鄭明哲
Ming-Jer Jeng
張連璧
Liann-Be Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 128
中文關鍵詞: 奈米碳管延伸式閘極電晶體酸鹼感測器氧化銦微波電漿
外文關鍵詞: carbon nanotube, EGFET, pH sensor, indium oxide, microwave plasma
相關次數: 點閱:239下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討奈米碳管結合氧化銦形成的複合薄膜,經不同溫度熱氧化以及調配不同濃度的碳管溶液,最後經過微波電漿處理,以EGFET的架構,應用於pH酸鹼度的感測器,進行I-V曲線圖、pH感測度量測,並探討感測度與材料特性之間的關聯性。
    本實驗主要是先以直流濺鍍系統鍍上銦薄膜於玻璃基板上,再以氮氣噴槍噴鍍以調配好的奈米碳管溶液在銦薄膜之上,最後再進行通入氮氣與氧氣的熱氧化處理;其次在將製程順序改變,先噴鍍碳管在玻璃基板上,然後再鍍銦在其上,之後再量測並觀察之;之後嘗試以微波電漿對元件進行處理,通入氫氣以及氧氣於試片上;最後再以場發射電子顯微鏡、拉曼光譜儀、X光繞射分析儀、傅立葉紅外線光譜儀分析材料的表面特性。
    靈敏度量測是在暗房以及室溫下進行,分別外加電壓於參考電極0~3V(VREF)、MOSFET之汲極0.3V(VDS),並觀察MOSFET之汲極電流(IDS)變化;本實驗結果顯示,以1mg重的奈米碳管粉末所調配的溶液,經過400°C的熱氧化處理,其靈敏度最佳為36.54mV/pH。
    最後可得到在適當的製程參數下,以熱方式進行元件的氧化,其奈米碳管中一定比例的缺陷空位(defect sites)以及較高結晶程度的氧化銦,是影響此複合薄膜進行酸鹼感測的重要因素;而以微波電漿進行處理,對奈米碳管也有很大的影響。


    The carbon nanotube/indium oxide(CNT/In2O3) nanostructure are grown on glass by DC sputter system and spray coating technique. The thin film with a EGFET structure are performed in the pH solution between pH 2 and pH 12 .
    Using different thermal oxidation temperature and different concentration of carbon nanotube suspension, it shows that the best pH sensitivity is 36.43mV/pH and the best experimental condition is at the thermal oxidation temperature of 400°C with a carbon nanotube powder of 1mg weight in the spraying solution. By using Raman spectroscopy and XRD, this shows that the proper defect sites of carbon nanotube and higher crystallinity of indium oxide presents better pH sensitivity.
    Microwave plasma with hydrogen and oxygen is also used as post-treatment and pre-treatment processes for the devices. It is found that the devices with different treatment condition can effectively influence the sensing performance.
    The device is simple to make and with a low cost compared to other techniques, giving it a potential to the mass production in the disposable pH sensor applications.

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅳ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 3 2.1 pH酸鹼感測的相關理論 5 2.1.1 pH之定義 5 2.1.2 能斯特方程式 5 2.1.3 離子鍵結吸附模型 7 2.2 奈米碳管的特性、合成及處理 9 2.2.1 奈米碳管的特性 9 2.2.2 奈米碳管的合成方式 10 2.2.3 奈米碳管的純化處理 12 2.3 以噴鍍方式製作奈米碳管元件的應用 13 2.4 奈米碳管pH酸鹼感測器的文獻回顧 15 2.5 氧化銦的特性 20 第三章 實驗方法 22 3.1 實驗流程 22 3.2 奈米碳管/氧化銦複合薄膜的製備 23 3.2.1 玻璃基板前處理 23 3.2.2 銦薄膜之沉積 24 3.2.3 奈米碳管薄膜之製備 24 3.2.4 奈米碳管/銦複合薄膜之熱氧化處理 25 3.2.5 奈米碳管/氧化銦複合薄膜感測元件之封裝 26 3.3 奈米碳管/氧化銦複合薄膜酸鹼感測元件的量測 27 3.4 實驗分析儀器之介紹 28 3.4.1 場發射掃描式電子顯微鏡(FE-SEM) 28 3.4.2 X-ray繞射儀(X-ray diffractometer, XRD) 28 3.4.3 顯微拉曼光譜儀(Micro-Raman spectroscopy) 29 3.4.4 傅立葉紅外線光譜儀(FTIR) 30 3.4.5 X射線光電子能譜儀(XPS) 30 第四章 結果與討論 37 4.1 奈米碳管、氧化銦、奈米碳管/氧化銦複合薄膜的酸鹼感測元件 比較 31 4.1.1 三種結構的酸鹼感測特性比較 31 4.1.2 三種結構酸鹼感測元件在不同熱氧化溫度的特性比較 38 4.1.3 拉曼分析與傅立葉紅外線光譜儀分析 48 4.2 奈米碳管/氧化銦複合薄膜酸鹼感測元件分析 56 4.2.1 不同濃度奈米碳管溶液製成的酸鹼感測元件分析 57 4.2.2 拉曼光譜儀分析 65 4.2.3 X光繞射分析儀分析 69 4.3 氧化銦/奈米碳管複合薄膜酸鹼感測元件分析 71 4.3.1 不同濃度奈米碳管溶液製成的酸鹼感測元件分析 73 4.3.2 拉曼光譜儀分析 80 4.2.3 X光繞射分析儀分析 84 4.4 奈米碳管/氧化銦複合薄膜酸鹼感測元件分析經過微波電漿處理 的特性分析 88 4.4.1 微波氫電漿進行後處理的酸鹼感測分析 89 4.4.2 微波氧電漿進行前處理的酸鹼感測分析 91 4.4.3 拉曼光譜儀及X射線光電子能譜儀與XRD分析 97 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 105

    [1] P.Bergveld, “Development of an Ion Sensitive Solid-State Device for
    Newrophysiological Measurement”, IEEE Transactions on Biomedical Engineering, BME-17, pp. 70-71(1970)
    [2] J. Van der Spiegel, I. Lauks, P. Chan D. Babic, “The Extended Gate Chemical
    Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensors and Actuators B, Vol. 4, pp.291-298(1983)
    [3] Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, “Study of the pH-ISFET and ENFET for Biosensor Applications”, Journal of Medical and Biological Engineering, Vol. 21, No. 3, pp. 135-146(2001)
    [4] Iijima.Sumio, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58(1991)
    [5] Lim, S.C. , Choi, H.K. , Jeong, H.J. , Song, Y.I. , Kim, G.Y. , Jung, K.T. , Lee, Y.H. , “A strategy for forming robust adhesion with the substrate in a carbon-nanotube field-emission array”, Carbon, Vol.44, No. 13, pp. 2809-2815(2006)
    [6] Chang , Y-H., Lu, Y-S., Hong, Y-L., Gwo, S., Yeh, J.A., “Highly sensitive pH sensing using an indium nitride ion-sensitive field-effect transistor”, IEEE Sensors Journal, Vol. 11, No. 5, pp. 1157-1161(2011)
    [7] Rilbe H., “pH and Buffer Theory-A New Approach”, Willey Series in Solution
    Chemistry, pp. 1(1996)
    [8] D.E. Yates, S. Levine, T.W. Healy, “Site-Binding Model of Electrical Double
    Layer at the Oxide/Water Interface”, J. Chem. Soc. Faraday Trans. I, Vol. 70,
    pp. 1807-1818(1974)
    [9] http://en.wikipedia.org/wiki/Carbon_nanotube
    [10] Imtani, A.N., Jindal, V.K., “Characterizing single-walled carbon nanotubes by
    pressure probe”, Carbon, Vol. 47, No. 14, pp. 3247-3251(2009)
    [11] Jung, S.M., Hahn, J., Jung, H.Y., Suh, J.S., “Clean carbon nanotube field emitters aligned horizontally”, Nano Letters, Vol. 6, No 7, pp. 1569-1573(2006)
    [12] Kwo, J.L., Yokoyama, M., Wang, W.C., Chuang, F.Y., Lin, I.N., “Characteristics of flat panel display using carbon nanotubes as electron emitters”, Diamond and Related Materials, Vol. 9, No.3, pp. 1270-1274(2000)
    [13] Xu, M., Sun,Z., Chen, Q., Tay, B.K., “Effect of chemical oxidation on the gas sensing properties of multi-walled carbon nanotubes”, International Journal of Nanotechnology, Vol. 6, No.7-8, pp. 735-744(2009)
    [14] Pradhan, B., Setyowati, K., Liu, H., Waldeck, D.H., Chen, J., “Carbon nanotube-polymer nanocomposite infrared sensor”, Nano Letters, Vol. 8, No. 4, pp. 1142-1146(2008)
    [15] Saleh Ahammad, A.J., Lee, J.-J., Rahman, M.A., “Electrochemical sensors based on carbon nanotubes”, Sensors, Vol. 9, No. 4, pp. 2289-2319(2009)
    [16] Aguirre, C.M., Auvray,S., Pigeon, S., Izquierdo, R., Desjardins, P., Martel, R., “Carbon nanotube sheets as electrodes in organic light-emitting diodes”, Applied Physics Letters, Vol. 88, No. 18, art. no. 183104(2006)
    [17] Pandolfo, A.G., Hollenkamp, A.F., “Carbon properties and their role in supercapacitors”, Journal of Power Sources, Vol. 157, No. 1, pp.11-27(2006)
    [18] Gruner,G., ”Carbon nanotube transistors for biosensing applications”, Analytical and Bioanalytical Chemistry, Vol. 384, No. 2, pp.322-335(2006)
    [19] Wang, M., Zhao, X., Ohkohchi, M., Ando, Y., “Carbon nanotubes grown on the surface of cathode deposit by arc discharge”, Fullerene Science and Technology, Vol. 4, No. 5, pp. 1027-1039(1996)
    [20] Cuo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., “Catalytic growth of single-walled manotubes by laser vaporization”, Chemical Physics Letters, Vol. 243, No.1-2, pp. 49-54(1995)
    [21] Pan, Z.W., Xie, S.S., Chang, B.H., Sun, L.F., Zhou, W.Y., Wang, G., “Direct growth of aligned open carbon nanotubes by chemical vapor deposition”, Chemical Physics Letters, Vol. 299, No. 1, pp. 97-102(1999)
    [22] Ando, Y., Zhao, X., Sugai, T., Kumar, M., “Growing carbon nanotubes”, Materials Today, Vol. 7, No. 9, pp. 22-29(2004)
    [23] Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., Heben, M.J., “Simple and complete purification of single-walled carbon nanotube materials”, Advanced Materials, Vol. 11, No. 16, pp. 1354-1358(1999)
    [24] Kamat, P.V., Thomas, K.G., Barazzouk, S., Girishkumar, G., Vinodgopal, K., Meisei, D., “Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field”, Journal of the American Chemical Society, Vol. 126, No. 34, pp. 10757-10762(2004)
    [25] Krstic, V., Duesberg, G.S., Muster, J., Burghard, M., Roth, S., “Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes”, Chemistry of Materials, Vol. 10, No. 9, pp. 2338-2340(1998)
    [26] Hazani, M., Hennrich, F., Kappes, M., Naaman, R., Peled, D., Sidorov, V., Shvarts, D., “DNA-mediated self-assembly of carbon nanotube-based electronic devices”, Chemical Physics Letters, Vol. 391, No. 4-6, pp. 389-392(2004)
    [27] Saran, N., Parikh, K., Suh, D.-S., Munoz, E., Kolla, H., Manohar, S.K., “Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Boundles on Flexible Plastic Substrates”, Journal of the American Chemical Society, Vol. 126, No. 14, pp. 4462-4463(2004)
    [28] Dan, B., Irvin, G.C., Pasquali, M., “Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, Vol. 3, No. 4, pp. 835-843(2009)
    [29] Lee, Y.D., Lee, K.-S., Lee, Y.-H., Ju, B.-K., “Field emission properties of carbon nanotube film using a spray method”, Applied Surface Science, Vol. 254, No. 2, pp. 513-516(2007)
    [30] Ramasamy, E., Lee, W.J., Lee, D.Y., Song, J.S., “Spray coated mulit-wall carbon nanotube counter electrode for tri-iodide(I3-) reduction in dye-sensitized solar cells”, Electrochemistry Communications, Vol. 10, No. 7, pp.1087-1089(2008)
    [31] Schindler, A., Brill, J., Fruehauf, N., Novak, J.P., Yaniv, Z., “Solution-deposited carbon nanotube layers for flexible display applications”, Physica E:Low-dimensional Systems and Nanostructures, Vol. 37, No. 1-2, pp.119-123(2007)
    [32] Bergveld, P., “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators, B:chemical, Vol. 88, No, 1, pp. 1-20(2003)
    [33] Fog, A., Buck, R.P., “Electronic semiconducting oxides as pH sensors”, Sensors and Actuators, Vol. 5, No. 2, pp. 137-146(1984)
    [34] Colombo, C., Kappes, T., Hauser, P.C., “Coulometric micro-titrator with a ruthenium dioxide pH-electrode”, Analytica Chimica Acta, Vol. 412, No.1-2, pp. 69-75(2000)
    [35] Yamamoto, K., Shi, G., Zhou, T., Xu, F., Zhu, M., Liu, M., Kato, T., Jin, L., “Solid-state pH ultramicrosensor based on a tungstic oxide film fabricated on a tungsten nanoelectrode and its application to the study of endothelial cells”, Analytica Chimica Acta, Vol. 480, No. 1, pp. 109-117(2003)
    [36] Steinhoff, G., Hermann, M., Schaff, W.J., Eastman, L.F., Stutzmann, M., Eickhoff, M., “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors”, Applied Physics Letters, Vol.83, No.1, pp. 177-179(2003)
    [37] Rezek, B., Watanabe, H., Shin, D., Yamamoto, T., Nebel, C.E., “Ion-sensitive field effect transistor on hydrogenated diamond”, Diamond and Related Materials, Vol. 15, No. 4-8, pp.673-677(2006)
    [38] Jung-Fu Hsu, Bohr-Ran Hunag, Chien-Sheng Huang, Hsin-Li Chen, “Silicon Nanowires as pH Sensor”, Japanses Journal of Applied Physics, Vol. 44, No. 4B, pp. 2626-2629(2005)
    [39] Zhao, R., Xu, M., Wang, J., Chen, G., “A pH sensor based on the TiO2 nanotube array modified Ti electrode”, Electrochimica Acta, Vol. 55, No. 20, pp. 5647-5651(2010)
    [40] Kwon, J.-H., Lee, K.-S., Lee, Y.-H., Ju, B. –K., “Single-wall carbon nanotube-based pH sensor fabricated by the spray method”, Electrochemical and Solid-State Letters, Vol. 9, No. 9, pp. H85-H87(2006)
    [41] Lee, K., Kwon, J.-H., Moon, S.-l., Cho, W.-S., Ju, B.-K., Lee, Y.-H., “pH sensitive multiwalled carbon nanotubes”, Materials Letters, Vol. 61, No.14-15, pp. 3201-3203(2007)
    [42] Zhang, W.-D., Xu, B., “A solid-state pH sensor pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes”, Electrochemistry Communications, Vol. 11, No. 5, pp. 1038-1041(2009)
    [43] Zhang, W.-D., Xu, B., “Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor”, Electrochimica Acta, Vol. 55, No. 8, pp. 2859-2864(2010)
    [44] Lee, D., Cui, T., “Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing”, Biosensors and Bioelectronics, Vol. 25, No.10, pp. 2259-2264(2010)
    [45] http://zh.wikipedia.org/wiki/銦
    [46] Yin, L.-T., Chou, J,-C., Chung, W.-Y., Sun, T.-P., Hsiung, S.-K., “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators, B:Chemical, Vol.71, No.1-2, pp.106-111(2000)
    [47] Du,N., Zhang, H., Chen, B., Xiangyang, M., Liu, Z., Wu, J., Yang, D., “Porous indium oxide nanotubes:Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors”, Advanced Materials, Vol. 19, No. 12, pp. 1641-1645(2007)
    [48] Darma, J., Han, C.-H., Han, S.-D., Sung, Y.-M., “Synthesis of CNT-SnO2 and CNT-In2O3 films for micro sensor application using vacuum microelectronics technology”, Proceedings-International Symposium on Discharges and Electrical insulation in Vacuum, ISDEIV, 2, art.no. 4676867, pp. 607-610(2008)
    [49] http://zh.wikipedia.org/wiki/拉曼光譜學
    [50] 成會明,奈米碳管,五南圖書出版有限公司,台北,第197頁(2004)
    [51] Behler, K., Osswald, S., Ye, H., Dimovski, S., Gogotsi, Y., “Effect of thermal
    treatment on the structure of multi-walled carbon nanotubes”, Journal of Nanoparticle Research, Vol. 8, No. 5, pp. 615-625(2006)
    [52] Chandradass, J., Bae, D.S., Kim, K.H., “A simple method to prepare indium oxide nanoparticles: Structural, microstructural and magnetic properties”, Advanced Powder Technology, Vol. 22, No. 3, pp.370-374(2011)
    [53] Rey, J.F.Q., Plivelic, T.S., Rocha, R.A., Tadokoro, S.K., Torriani, I., Muccillo, E.N.S., “Synthesis of In2O3 nanoparticles by thermal decomposition of a citrate gel precursor”, Journal of Nanoparticle Research, Vol.7, No.2-3, pp. 203-208(2005)
    [54] Matei Ghimbeu, C., Schoonman, J., Lumbreras, M., “Porous indium oxide thin
    films deposited by electrostatic spray deposition technique”, Ceramics International, Vol. 34, No. 1, pp.95-100(2008)
    [55] Yuan, Z.-J., Zhu, X.-M., Wang, X., Zhang, Y.-Y., Wan, Z.-F., Qiu, D.-J., Wu, H.-Z., Du, B.-Y., “Preparation and characteristics of indium oxide thin films”, Journal of Inorganic Materials, Vol. 25, No. 2, pp. 141-144(2010)
    [56] Yuan, Z., Zhu, X., Wang, X., Cai, X., Zhang, B., Qiu, D., Wu, H., “Annealing effects of In2O3 thin films on electrical properties and application in thin film transistors”, Thin Solid Films, Vol. 519, No, 10, pp. 3254-3258(2011)
    [57] Yu, J., Chen, J., Deng, S.Z., Xu, N.S., “Field emission characteristics of screen-printed carbon nanotubes cold cathode by hydrogen plasma treatment”, Applied Surface Science, Vol. 258, No. 2, pp. 738-742(2011)
    [58] Yoo, K.-P., Kwon, K.-H., Min, N.-K., Lee, M.J., Lee, C.J., “Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films”, Sensors and Actiators, B:Chemical, Vol. 143, No. 1, pp. 333-340(2009)
    [59] Chen, C., Liang, B., Ogina, A., Wang, X., Nagatsu, M., “Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment”, Journal of Physical Chemistry C, Vol. 113, No. 18, pp. 7659-7665(2009)

    QR CODE