簡易檢索 / 詳目顯示

研究生: 鄧宇豪
Yu-Hao Teng
論文名稱: 雙脈衝綠光雷射退火應用於IGBT晶背製程之研究
Study on the Application of Double-Pulse Green Laser Annealing in the Backside Process of IGBT Wafers
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭正元
Jeng-Ywan Jeng
張復瑜
Fuh-Yu Chang
李宏道
Hong-Dao Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 144
中文關鍵詞: 雷射退火絕緣閘雙極電晶體BGBM離子佈植
外文關鍵詞: Laser annealing, IGBT, BGBM, Ion implantation
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著半導體技術的發展,元件的尺寸持續微縮,使得對製程的要求更為精確、嚴格。在半導體退火製程多年的發展中,雷射退火展現出它的優勢,成為了現今半導體主流的退火方法。
本研究將以雷射退火為主軸,透過退火製程的參數調變,應用於絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor , IGBT)的BGBM(Backside Grinding & Backside Metallization)製程中。研究中透過離子佈植,將矽晶圓植入硼元素,然後針對雷射功率密度、延遲時間和雷射重疊率等關鍵參數進行實驗,並探討這些參數對矽晶圓表面性質、片電阻值與均勻性的影響。實驗結果發現,適度提高功率密度有助於提升摻雜物質的活化效率,但過高則會導致晶圓表面粗糙度增加甚至產生裂紋;延遲時間和重疊率的調變對活化效果的影響則取決於功率密度的設定,在較低功率密度下,適當延長延遲時間和增加重疊率能夠明顯改善均勻性和活化效率。本研究為IGBT製程中的雷射退火提供了數據,作為未來製程參數設定上的參考。


As semiconductor technology advances, continuous device scaling imposes more stringent and precise requirements on manufacturing processes. Among the various annealing processes developed over years, laser annealing demonstrates its advantages, becoming the mainstream annealing method in semiconductors.
This study focuses on laser annealing by modulating annealing parameters, applied to the Backside Grinding & Metallization (BGM) process for Insulated Gate Bipolar Transistors (IGBTs). Silicon wafers were implanted with boron through ion implantation. Experiments were then conducted to investigate the effects of key parameters - laser power density, delay time, and overlap rate - on wafer surface properties, sheet resistance, and uniformity. Results revealed that moderately increasing power density aids in enhancing dopant activation efficiency, but excessive power density leads to increased surface roughness and even cracking. The influences of delay time and overlap rate adjustments depended on the power density setting. At relatively lower densities, properly extending delay time and increasing overlap rate significantly improved uniformity and activation efficiency. This study provides data on laser annealing for the IGBT manufacturing process, serving as a reference for future process parameter optimization.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 1、 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究流程 2 1.4 論文架構 3 2、 文獻回顧 5 2.1 IGBT元件發展 5 2.1.1 BJT與MOSFET 6 2.1.2 平面式(Planar)與溝槽式(Trench)IGBT 10 2.1.3 穿透型(Punch-Through , PT)IGBT 12 2.1.4 非穿透型(Non-Punch-Through , NPT)IGBT 13 2.1.5 場截止型(Field-Stop , FS)IGBT 14 2.2 BGBM簡介 17 2.2.1 製程步驟 17 2.3 離子佈植 20 2.3.1 離子佈植原理 20 2.3.2 離子停止(Ion Stopping) 21 2.3.3 通道效應(Channeling Effect) 21 2.3.4 離子佈植損傷機制 23 2.3.5 離子佈植缺陷型態 27 2.4 雷射退火 30 2.4.1 快速熱退火(Rapid Thermal Annealing) 31 2.4.2 雷射退火原理 31 2.4.3 雷射退火損傷修復機制 32 2.4.4 雙脈衝綠光雷射退火 33 2.4.5 雷射退火的參數 34 3、 研究架構與實驗設備 37 3.1 實驗試片 37 3.2 實驗製程設備 37 3.2.1 研磨機 38 3.2.2 蝕刻機 39 3.2.3 離子佈植機 41 3.2.4 雷射退火機 45 3.3 量測與檢測設備 48 3.3.1 厚度量測設備 48 3.3.2 表面粗糙度量測設備 49 3.3.3 光學顯微鏡 50 3.3.4 四點探針量測儀[52] 52 3.4 實驗流程與材料製備 54 3.4.1 能量密度(Energy density , E)調變實驗 55 3.4.2 延遲時間(Delay time , td)調變實驗 58 3.4.3 重疊率(Overlap rate , OR)調變實驗 59 4、 實驗結果與討論 61 4.1 能量調變 61 4.1.1 As-implanted 61 4.1.2 E = 0.4 J/cm2退火 63 4.1.3 E = 0.8 J/cm2退火 67 4.1.4 E = 1.2 J/cm2退火 70 4.1.5 E = 1.6 J/cm2退火 73 4.1.6 E = 2.0 J/cm2退火 76 4.1.7 小結 78 4.2 延遲時間調變 (E = 1.8 J/cm2) 81 4.2.1 td = 500 ns退火 81 4.2.2 td = 700 ns退火 84 4.2.3 td = 1000 ns退火 86 4.2.4 小結 87 4.3 重疊率調變 (E = 1.8 J/cm2) 89 4.3.1 OR X = 10%退火 89 4.3.2 OR X = 50%退火 92 4.3.3 OR X = 90%退火 94 4.3.4 小結 95 4.4 延遲時間調變 (E = 0.8 J/cm2) 98 4.4.1 td = 500 ns退火 98 4.4.2 td = 700 ns退火 101 4.4.3 td = 1000 ns退火 103 4.4.4 小結 104 4.5 重疊率調變 (E = 0.8 J/cm2) 106 4.5.1 OR X = 10%退火 106 4.5.2 OR X = 50%退火 109 4.5.3 OR X = 90%退火 111 4.5.4 小結 112 4.6 結果討論 114 5、 結論與未來展望 116 5.1 結論 116 5.2 未來展望 117 參考文獻 118

[1] Yole Development, “IGBT Markets and Application Trends”,
i-Micronews, 2013

[2] Sattar, “Insulated Gate Bipolar Transistor (IGBT) Basics”,
IXYS Corporation, IXAN0063

[3] M. Sweet, “EEE6206 Power Semiconductor Devices: Section 2f:Bipolar Junction Power Transistors [PowerPoint slides]”, The University of Sheffield

[4] H-S Lee, “High Power Bipolar Junction Transistors in Silicon Carbide [Teknologie Licentiat's dissertation]”, Royal Institute of Technology, Stockholm, Sweden, 2005

[5] N. Garg, A. Rizvi, A. Chandra, A. Singh, “A Review on Comparative Analysis of Various Mosfets on The Basis of Electrical Parameters”, 2023 International Conference on Disruptive Technologies (ICDT), 2023

[6] S. Kaundal, “Design and structural optimization of junctionless FinFET with Gaussian-doped channel”, Journal of Computational Electronics, Volume 17, pp. 637-645, 2018

[7] C. Svensson, “Forty Years of Feature-Size Predictions (1962-2002)”, ISSCC 2003, 2003

[8] S. Persson, “Modeling and characterization of novel MOS devices [Doctoral Thesis]”, KTH Royal Institute of Technology, Stockholm, Sweden, 2004

[9] E. M. Findlay, “High Efficiency IGBTs through Novel Three-Dimensional Modelling and New Architectures [Doctoral Thesis]”, University of Cambridge, Cambridge, England, 2020

[10] TOSHIBA, “IGBTs (Insulated Gate Bipolar Transistor) Application Note”, 2022

[11] J. Dodge, J. Hess, “IGBT Tutorial”, Application Note APT0201, Advanced Power Technology, 2002

[12] J. Lutz, H. Schlangenotto, U. Scheuermann, R. D. Doncker, “Semiconductor Power Devices Physics, Characteristics, Reliability”, 2018

[13] 張育瑋, “3300V溝槽式閘極場截止型絕緣閘極雙極性電晶體結合分離浮接P柱設計改善導通電壓及短路能力與更高壓4500V元件之研究與分析”, 逢甲大學電子工程系碩士班碩士論文, 2022

[14] ON Semiconductor, “IGBT Applications Handbook”, 2014

[15] T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer and T. Schmidt, “TheField Stop IGBT (FS IGBT). A new power device concept with a great improvement potential”, 12th International Symposium on Power Semiconductor Devices & ICs (ISPSD), pp. 355-358, 2000

[16] J. E. Yeon, M. Y. Park, K. M. Cho, H. J. Kim, “Field-Stop Shorted-Anode Trench IGBT for Induction Heating Appliances”, IECON, pp. 422-426, 2012

[17] DISCO Corporation, “TAIKO製程”, https://www.disco.co.jp/cn_t/solution/library/grinder/taiko_process.html

[18] M. R. Marks, Z. Hassan, K. Cheong, “Ultrathin Wafer Pre-Assembly and Assembly Process Technologies: A Review”, Critical Reviews in Solid State and Materials Sciences, 2015

[19] MKS Instruments, Inc., “Ion Implantation”,
https://www.mks.com/n/ion-implantation

[20] H. Xiao, “Chapter 8 - Ion Implantation [PowerPoint slides]”, www2.austin.cc.tx.us/HongXiao/Book.htm

[21] B. Cui, “Chapter 8 - Ion Implantation [PowerPoint slides]”, University of Waterloo, http://ece.uwaterloo.ca/~bcui/

[22] R. A. Spits, “Dynamical Behaviour of Implanted Ions in Diamond [Master’s thesis]”, University of the Witwatersrand, School of Physics, 1990

[23] A. Othonos, C. Christofides, J. Boussey‐Said, M. Bisson, “Raman spectroscopy and spreading resistance analysis of phosphorus implanted and annealed silicon”, Journal of Applied Physics, Volume 75, Issue 12, pp. 8032–8038, 1994

[24] L. Pelaz, L. A. Marqu´es, J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon”, University of Valladolid, Department of Electronics, E.T.S.I. Telecommunication, 47011 Valladolid, Spain, 2024

[25] G.Hobler, G.Otto, “Status and open problems in modeling of as-implanted damage in silicon”, Vienna University of Technology, Institute for Solid State Electronics, Floragasse 7/362, A-1040 Vienna, Austria, 2023

[26] S. Decoster, “ION IMPLANTATION IN GE: STRUCTURAL AND ELECTRICAL INVESTIGATION OF THE INDUCED LATTICE DAMAGE & STUDY OF THE LATTICE LOCATION OF IMPLANTED IMPURITIES [Doctoral Thesis]”, Instituut voor Kern-en Stralingsfysica, Department Natuurkunde en Sterrenkunde, Faculteit Wetenschappen, 2009

[27] T. Saleem, “Development of pixel detector for ATLAS Inner Tracker(ITK) upgrade at HL-LHC and Searching for the Standard Model Higgs boson decay into b-quark pair with ATLAS experiment [Doctoral Thesis]”, Université Paris-Saclay, Doctoral Schools of PHENIICS, France, 2019

[28] D. D. McNamara, “How do Eclogites Deform in Subduction and Collision Zones? – An Alpine Study [Doctoral Thesis]”, University of Liverpool, Department of Earth, Ocean and Ecological Sciences, England, 2009

[29] E. Demenev, “Evolution of Arsenic nanometric distributions in silicon under advanced ion implantation and annealing processes [Doctoral Thesis]”, University of Trento, Trento, Italy, 2013

[30] A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini, P. Fornara “Dopant diffusion during amorphous silicon crystallization”, Defect and Diffusion Forum, Volume 264, pp. 33-38, 2007

[31] Z. Tonghe, L. Guohui, W. Yuguang, “A transient enhanced diffusion model of lattice restoration during rapid thermal annealing (RTA)”, Nuclear Techniques, pp. 44-48, 1988

[32] J. Qiao, “Laser Annealing On Wafer [Master’s thesis]”, Polytechnic University of Turin, Turin, Italy, 2021

[33] M.S. Brown, C.B. Arnold, “Interaction and application to multiscale surface modification”, Laser Precision Microfabrication, Springer, Berlin, pp. 91-120, 2010

[34] D. Arduino, S. Stassi, C. Spano, L. Scaltrito, S. Ferrero, V. Bertana, “Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review”, Materials 2023, 16(24), 7674, 2023

[35] C. W. White, B. R. Appleton, S. R. Wilson, “Laser Annealing of Semiconductors”, (Eds, J. M. Poate and J. W. Mayer) Academic Press, New York, pp. 111, 1982

[36] J. S. Im, H. J. Kim, M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films”, Applied Physics Letters, Volume 63, Issue 14, 1993

[37] T. J. Kudo, N. Wakabayashi, “PN Junction Formation for High-Performance Insulated Gate Bipolar Transistors; Double-Pulsed Green Laser Annealing Technique”, MRS Online Proceedings Library(OPL), Volume 912:Symposium C-Doping Engineering for Device Fabrication, 2006

[38] T. J. Kudo, “Double-Pulsed Laser Annealing Technologies and Related Applications”, 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors, 2006

[39] S. R. Aid, S. Hara, Y. Shigenaga, T. Fukaya, Y. Tanaka, S. Matsumoto, G. Fuse, S. Sakuragi, “Formation of Ultra Shallow p+/n Junction in Silicon Using a Combination of Low-Temperature Solid Phase Epitaxy and Non-Melt Double-Pulsed Green Laser Annealing”, Japanese Journal of Applied Physics, Volume 52, Number 2R, 2013

[40] THORLABS, “Pulsed Lasers-Introduction to Power and Energy Calculations [PowerPoint slides]”, https://www.thorlabs.com/images/tabimages/Laser_Pulses_Power_Energy_Equations.pdf

[41] Edmund Optics, “Why Use a Flat Top Laser Beam?”, https://www.edmundoptics.com/knowledge-center/application-notes/optics/why-use-a-flat-top-laser-beam/

[42] DISCO Corporation, “DFG8540 Fully Automatic In-Feed Surface Grinder”, https://www.disco.co.jp/cn_t/products/grinder/dfg8540.html

[43] J. Yin, Q. Bai, Y. Li, B. Zhang, “Formation of subsurface cracks in silicon wafers by grinding”, Nanotechnology and Precision Engineering Volume 1, Issue 3, pp. 44-48, 2018
[44] Mimasu Semiconductor Industry Co.,Ltd, “MSE Series spin etchers”, https://www.mimasu.co.jp/en/business/product/p01-3.html

[45] H. Habuka, S. Ohashi, T. Kinoshita, “Numerical calculation model of a single wafer wet etcher using a swinging nozzle”, Materials Science in Semiconductor Processing, Volume 15, Issue 5, 2012

[46] Z. Cheng, X. Liu, J. Xie, Z. Zuo, “Diffusion and Ion Implantation Equipment”, Handbook of Integrated Circuit Industry, Springer, 2023

[47] 邱仕旻, “離子植入製程Lens Voltage電性異常改善之研究”, 明新科技大學電子工程系碩士論文, 2016

[48] ULVAC Technologies, Inc., “Ion Implanter SOPHI-400”, https://www.ulvac.com.tw/product/1zXL2kODh1GsrU7R

[49] ULVAC - Think Beyond Vacuum, “Ion implantation for IGBT”, https://www.ulvac.co.jp/wiki/en/process_g_igbt_ion/

[50] Sumitomo Heavy Industries, Ltd, PRODUCTS, “SWA “Green/Hybrid” Laser series” https://www.shimechatronics.jp/solutions/en/products/laser/swa-green-hybrid-laser-series/

[51] Bruker Corporation, “3D OPTICAL PROFILOMETER ContourX-200”, https://www.bruker.com/en/products-and-solutions/test-and-measurement/3d-optical-profilers/contourx-200.html

[52] H. Imamura, “A Study on Interface Controlled Schottky Contact for Scaled Si Devices [Master’s thesis]”, Tokyo Institute of Technology, Department of Electronics and Applied Physics Interdisciplinary Graduate School of Science and Engineering, 2015

[53] F. M. Smits, “Measurement the of Sheet Resistivities with the Four-Point Probe”, Bell System Technical Journal, Volume 37, Issue 3, 1958

[54] Creative Design Engineering, Inc., “ResMap 178”,
https://cde-resmap.com/up-to-8-resmap-178/

[55] L. Huang, B. Li, N. Ren, “Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy”, Ceramics International, Volume 42, Issue 6, pp. 7246-7252, 2016

無法下載圖示 全文公開日期 2029/08/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2029/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE