簡易檢索 / 詳目顯示

研究生: 廖藝澤
Yi-Tse Liao
論文名稱: 濺鍍氮氧化矽薄膜以及氮氧化矽/矽多層膜之結構與發光性質研究
Structural and Luminescent Properties of Sputter Deposited Silicon Oxynitride Films and Multi-layered Silicon Oxynitride/Silicon Stack
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 氮氧化矽磁控式濺鍍量子點光激發螢光電激發光
外文關鍵詞: Silicon oxynitride, Magnetron sputtering, Quantum dots, PL, EL
相關次數: 點閱:338下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用反應式磁控濺鍍(Magnetron sputtering)系統配合高真空下的熱退火製程,成功製備出含有不同氮、氧濃度之氮氧化矽(SiOxNy)單層薄膜以及氮氧化矽/矽(SiON/Si)之多層膜結構。
利用X光光電子能譜儀(XPS)的對Si 2p3/2、N 1s、O 1s進行分析,發現束縛能位置會隨著製備條件的不同而改變,根據不同的束縛能位置可將薄膜內部的鍵結狀態分為四類,Si─N4、Si─N3O、Si─O3N以及Si─O4,其對應到的四種鍵結單元分別為Si3N4、Si2ON2、Si6O9N2 以及SiO2。其中氮化矽(Si3N4)結構中含有大量的氮懸掛鍵(Nitrogen dangling bond),而氮氧化矽(Si2ON2、Si6O9N2)結構中則含有大量的O─Si─N鍵結。經過拉曼光譜與穿透式電子顯微鏡的分析,證明氮氧化矽單層膜的內部在退火後並沒有矽團簇生成。
利用He-Cd 325 nm的雷射在室溫下進行光激發螢光光譜的量測,可觀察到三支來自於缺陷態的發光峰,分別位於約400 nm, 510 nm及780 nm的位置。在氮濃度較高、氧濃度較低的樣品中,其鍵結單元以氮化矽為主,因此由氮的懸掛鍵主導薄膜的發光性質,反映在PL光譜中為較強的藍色(400 nm)發光;在氧濃度較高、氮濃度較低的樣品中,其鍵結單元以氮氧化矽為主,因此由O─Si─N鍵結主導薄膜的發光性質,反映在PL光譜中為較強的綠色(510 nm)發光。位於780 nm的發光峰可能由N 2p及O 2p能態之間的復合行為所造成。在氮氧化矽/矽之多層膜結構中,利用PL的量測可觀察到偏綠之白色螢光現象,經過分峰後發現除了上述三支發光峰外,又額外增加了一支發光峰位於~610 nm的位置,此峰可能來自於矽層中形成的矽量子點,造成了量子侷限效應所貢獻。
最後將氮氧化矽(SiOxNy)單層薄膜以及氮氧化矽/矽(SiON/Si)之多層膜製備成ITO/SiON/Si Wafer/Al的元件,並成功觀察到電激發光的現象。由電壓-電流曲線指出其導電機制可能為空間電荷傳導,其發光現象源自載子於缺陷態中復合所造成。此外,光激發光與電激發光皆具有相似的發光波段,而且只出現在退火後的樣品中,證明了兩者的發光行為來自於相同的復合中心。


Silicon oxynitride (SiOxNy) and multi-layered silicon oxynitride/silicon structures (SiON/Si) with different nitrogen and oxygen concentrations were fabricated by reactive magnetron sputtering deposition followed by thermal annealing in high vacuum environment.
According to the x-ray photoelectron spectroscopy analyses, the binding energies of Si 2p3/2, N 1s and O 1s shift with deposition condition of SiON. Four tetrahedral phases such as Si─N4, Si─N3O, Si─O3N, and Si─O4 are possibly present, corresponding to the four bonding units Si3N4, Si2ON2, Si6O9N2 , SiO2. Si3N4 is believed to be the origin of nitrogen dangling bonds, and silicon oxynitride structures like Si2ON2 and Si6O9N2 are the origin of O─Si─N bonds. In combination with analyses of Raman spectroscopy and high resolution transmission electron microscopy, we demonstrate that there is no silicon clusters in the SiON films.
Strong room temperature photoluminescence, excited by He-Cd 325 nm laser, from defect– related states was observed in about 400 nm, 510 nm and 780 nm. It is found that blue emission peak arises from the nitrogen dangling bonds which dominate in the samples with relatively higher nitrogen concentration; the green emission peak originates from the luminescent center of O─Si─N bonds which dominate in the higher oxygen concentration ones; peaks at 780 nm is probably from the recombination between N 2p and O 2p. For multi-layered SiON/Si films, white photolumine- scence was observed due to the additional luminescence at ~610 nm from quantum dots formed in the silicon layers of the film.
Visible electroluminescence was obtained from SiOxNy and multi-layered SiON/Si films on p-type silicon substrate in a ITO/SiON/Si Wafer/Al structure. The I-V behavior is indicative of space charge-limited current, and the EL was possibly attributed to the recombination of carriers through the luminescent center in the SiON layer. The PL and EL were present only in annealed samples, and the emissions are similar from same samples which suggests the recombination centers from PL and EL are the same.

中文摘要........................................................................................................................I 英文摘要......................................................................................................................III 致謝..............................................................................................................................III 目錄..............................................................................................................................V 表目錄.......................................................................................................................VIII 圖目錄...........................................................................................................................X 第一章 前言...............................................................................................................1 第二章 文獻回顧與實驗原理...............................................................................3 2-1 材料之發光機制介紹.................................................................................3 2-1.1 光致發光............................................................................................3 2-1.2 電致發光............................................................................................4 2-2 矽基發光材料之發光原理........................................................................7 2-2.1 量子侷限效應....................................................................................7 2-2.2 缺陷發光..........................................................................................12 2-3 多孔矽之發光介紹............................................................................13 2-4 矽/二氧化矽之發光介紹...................................................................15 2-5 矽/氮化矽之發光介紹.......................................................................18 2-6 氮氧化矽之發光介紹........................................................................... 21 2-6.1 氮氧化矽簡介..................................................................................21 2-6.2 鍵結分析..........................................................................................21 2-6.3 藍光之缺陷發光分析......................................................................23 2-6.4 綠光之缺陷發光分析......................................................................25 2-7 矽基發光元件之性質分析.......................................................................26 2-8 真空鍍膜製程.............................................................................................29 2-8.1 磁控式濺鍍………………………………………………………29 2-8.2 直流與射頻濺鍍系統……………………………………………30 2-8.3 反應式濺鍍……………………………………………………31 第三章 實驗方法與步驟......................................................................................33 3-1 實驗材料與藥品規格..............................................................................33 3-2 薄膜製程裝置...........................................................................................34 3-2.1 磁控式濺鍍系統..............................................................................35 3-2.2 石英管爐系統..................................................................................36 3-3 實驗步驟....................................................................................................37 3-3.1 實驗流程..........................................................................................37 3-3.2 氮氧化矽薄膜之製備......................................................................39 3-3.3 元件製作..........................................................................................41 3-4 薄膜分析與鑑定……………………………………………………44 3-4.1 表面輪廓儀(Alpha-Step) ................................................................45 3-4.2 化學分析影像能譜儀(ESCA) ........................................................45 3-4.3 傅立葉紅外線光譜儀(FTIR) .........................................................45 3-4.4 顯微拉曼光譜儀(Micro-Raman Spectra) .......................................46 3-4.5 光激發螢光光譜儀(PL) .................................................................46 3-4.6 電性與電激發光譜量測儀(I-V & EL)...........................................47 第四章 結果與討論...............................................................................................49 4-1 反應式濺鍍速率………………………………………………50 4-2 單層氮氧化矽發光薄膜…………………………………………51 4-2.1 化學組成與鍵結分析………………………………………………51 4-2.2 化學結構分析………………………………………………………63 4-2.3 物理結構分析……………………………………………………73 4-2.4 光學性質分析……………………………………………………75 4-3 多層氮氧化矽發光薄膜…………………………………………………79 4-3.1 結構分析……………………………………………………………79 4-3.2 光學性質分析………………………………………………………80 4-4 發光元件分析……………………………………………………81 第五章 結論……………………………………………………………84 參考文獻..............................................................................................86

[1] Ryogo Kubo, “Electronic properties of small metallic particles”, Phys.
Lett., Volume 1, p. 49 (1962)
[2] L.T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., Volume 57, p. 1046 (1990)
[3] M. Fauchet, “Light emission from Si quantum dots”, Materialtoday, p. 28 (2005)
[4] 謝嘉民、賴一凡、林永昌、枋志堯,「光激發螢光量測的原理、架構
及應用」, 奈米通訊,第12卷第2期
[5] 蘇佩徵,「選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研
製」,中央大學電機工程研究所碩士論文,民國94年
[6] 陳文照、曾春風、游信和,「材料科學與工程導論」,高立圖書有限
公司
[7] 詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,台灣科技大學工程技術研究所碩士論文,民國99年
[8] B. Delley and E. F. Steigmeier, “Quantum confinement in Si nanocrys- tals ”, Phys. Rev. B, 47, p. 1397 (1993)
[9] The Fuss About Quantum Dots,” http://www.photonics.com/Article”
[10] Z. H. Lu, D. J. Lockwood and J. M. Baribeau, “Quantum confinement
and light emission in SiO2/Si superlattices”, Nature, 38, p. 258 (1995)
[11] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach”, Appl. Phys. Lett., Volume 80, p. 661 (2002)
[12] Zhongyuan Ma, Peigao Han, Xinfan Huang, Yanping Sui, San Chen, Bo Qian, Wei Li, Jun Xu, Ling Xu, Kunji Chen, Duan Feng, “Enhanced green to red photoluminescence in thermally annealed of amorphous- Si:H/SiO2 multilayers ”, Thin solid films, Volume 515, p. 2322 (2006)
[13] H. L. Hao, L. K. Wu, W. Z. Shen, and H. F. W. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride”, Appl. Phys. Lett., Volume 91, p. 201922 (2007)
[14] H. L. Hao, L. K. Wu, and W. Z. Shen, “Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films”, Appl. Phys. Lett., Volume 92, p. 121922 (2008)
[15] J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures”, Appl. Phys. Lett., Volume 93, p. 151116 (2008)
[16] Samson T. H. Silalahi, H. Y. Yang, K. Pita, and Yu Mingbin, “Rapid thermal annealing of sputtered Silicon-rich oxide/SiO2 superlattice structure”, Electrochemical and Solid-State Letters, Volume 12, p. k29 (2009)
[17] Samson T. H. Silalahi, Q. V. Vu, H. Y. Yang, K. Pita, Yu Mingbin, “Size control of si nanocrystals by two-step rapid thermal annealing of sputtered Si-rich oxide/SiO2 superlattice”, Appl. Phys. A, Volume 98, p. 867 (2010)
[18] Tae-Youb Kim, Nae-Man Park, Kyung-Hyun Kim, Gun Yong Sung, Young-Woo Ok, Tae-Yeon Seong, and Cheol-Jong Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., Volume 85, p. 5355 (2004)
[19] Tae-Wook Kim, Chang-Hee Cho, Baek-Hyun Kim, and Seong-Ju Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., Volume 88, p. 123102 (2006)
[20] G. Allan, C. Delerue, and M. Lannoo, “Quantum confinement in amorphous silicon layers”, Appl. Phys. Lett., Volume 71, p. 1189 (1997)
[21] Kengo Nishio* and Junichiro Kōga, Toshio Yamaguchi, Fumiko Yonezawa, “Theoretical study of light-emission properties of amorphous silicon quantum dots”, Phys. Rev. B, Volume 67, p. 195304 (2003)
[22] Fabio Iacona, Corrado Bongiorno, Corrado Spinella, Simona Boninelli, and Francesco Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films”, J. Appl. Phys., Volume 95, p. 3723 (2004)
[23] Giovanni Mannino, Corrado Spinella, Corrado Bongiorno, Giuseppe Nicotra, Flora Mercorillo, Vittorio Privitera, Giorgia Franzo, Alberto Maria Piro, MariaGrazia Grimaldi, Maria Ausilia Di Stefano, and Silvestra Di Marco, “Synthesis of crystalline Si quantum dots by millisecond laser irradiation of SiOxNy layers”, J. Appl. Phys., Volume 107, p. 023703 (2010)
[24] A. Uhlir, “Electrolytic shapping of germanium and silicon”, Bell System Tech J., Volume 35, p. 333 (1956)
[25] K. Barla, G. Bomchil, R. Herina, and J.C. Pfister, J. Cryst. Growth., Volume 68, p. 721 (1984)
[26] I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X‐ray double crystal diffraction study of porous silicon”, Appl. Phys. Lett., Volume 46, p. 1133 (1985)
[27] J. M. Rehm, G. L. McLendon, L. Tsybeskov, and P. M. Fauchet, “How methanol affects the surface of blue and red emitting porous silicon”, Appl. Phys. Lett., Volume 66, p. 3669 (1995)
[28] A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon”, J. Appl. Phys. Volume 82, p. 909 (1997)
[29] R. P. Vasquez, A. Madhukar, and A. R. Tanguay, “Spectroscopic ellipsometry and x‐ray photoelectron spectroscopy studies of the annealing behavior of amorphous Si produced by Si ion implantation”, J. Appl. Phys. Volume 58, p.2337 (1985)
[30] S. M. Prokes, O. J. Glembocki, V. M. Bermudez, and R. Kaplan, L. E. Friedersdorf and P. C. Searson, “SiHx excitation: An alternate mecha- nism for porous Si photoluminescence”, Phys. Rev. B, Volume 45, p. 13788 (1992)
[31] M. B. Robinson, A. C. Dillon, and S. M. George, “Porous silicon photo- luminescence versus HF etching: No correlation with surface hydrogen species”, Appl. Phys. Lett., Volume 62, p. 1493 (1993)
[32] M. V. Wolkin, J. Jorne, and P. M. Fauchet, “Electronic states and luminescence in porous silicon quantum dots: the role of Oxygen”, Phys. Rev. Lett., Volume 82, p. 197 (1999)
[33] Nenad Lalic, Jan Linnros, “Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide”, J. Lumin., volume 80, p. 263 (1999)
[34] Suk-Ho Choi and R. G. Elliman, “Reversible charging effects in SiO2 films containing Si nanocrystals”, Appl. Phys. Lett., Volume 75, p. 968 (1999)
[35] S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, “Dimensions of luminescent oxidized and porous silicon structures”, Phys. Rev. Lett., Volume 72, p. 2648 (1994)
[36] T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, “Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size ”, Phys. Rev. Lett., Volume 80, p. 3803 (1999)
[37] Aaron Puzder, A. J. Williamson, Jeffrey C. Grossman, and Giulia Galli, “Surface Chemistry of Silicon Nanoclusters”, Phys. Rev. Lett., Volume 88, p. 097401 (2002)
[38] M. -B. Park, N. -H. Cho, “Structural, chemical and optical features of nanocrystalline Si films prepared by PECVD techniques ”, Appl. Surf. Sci., Volume 190, p. 151 (2002)
[39] Zhongyuan Ma, Li Wang, Kunji Chen, Wei Li, Lin Zhang, Yun Bao, Xiaowei Wang, Jun Xu, Xinfan Huang, Duan Feng, “Blue light emission in nc-Si/SiO2 multilayers fabricated using layer by layer plasma oxidation ”, J. Non-Cryst Solids., Volume 299, p. 248 (2002)
[40] C. H. Chang, Y. H. Pai, J. H. He, G. R. Lin, “Wavelength-tunable blue photoluminescence of <2 nm Si nanocrystal synthesized by ultra- low-flow-density PECVD”, Acta Materialia, Volume 58, p. 1270 (2010)
[41] V. A. Gritsenko, P. A. Punder, Sov. Phys. Solid. State, Volume 25, p. 901 (1983)
[42] A. Iqbal, W. B. Jackson, C. C. Tsai, J. W. Allen, and C. W. Bates, “Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy”, J. Appl. Phys. Volume 61, p. 2947 (1987)
[43] John Robertson and Martin J. Powell, “Gap states in silicon nitride”, Appl. Phys. Lett., Volume 44, p. 415 (1984)
[44] X. T. Zhang, Z. Liu, Z. Zheng, S. K. Hark, Y. B. Fu, and G. B. Zhang, “Synthesis and photoluminescence properties of well-aligned Ga-doped N-rich SiOxNy nanowire bundles”, Appl. Phys. Lett., Volume 90, p. 183110 (2007)
[45] Minghua Wang, Dongsheng Li, Zhizhong Yuan, Deren Yang, and Duanlin Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters”, Appl. Phys. Lett., Volume 90, p. 131903 (2007)
[46] Nae-Man Park, Chel-Jong Choi, Tae-Yeon Seong, and Seong-Ju Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phys. Rev. Lett. Volume 86, p. 1355 (2001)
[47] Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride”, Appl. Phys. Lett., Volume 83, p. 3474 (2003)
[48] Moon-Seung Yang, Kwan-Sik Cho, Ji-Hong Jhe, Se-Young Seo, Jung H. Shin, Kyung Joong Kim, and Dae Won Moon, “Effect of nitride passiva- tion on the visible photoluminescence from Si-nanocrystals”, Appl. Phys. Lett., Volume 85, p. 3408 (2004)
[49] L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, and E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films”, Appl. Phys. Lett., Volume 88, p. 233109 (2006)
[50] 周淑婷,「氮氧化矽絕緣層其光致發光及拉曼光譜與MOS結構電容電壓量測之研究」,中山大學物理研究所碩士論文,民國92年
[51] A.V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gabler, “New optimization algorithm for the synthesis of rugate optical coatings, ” Applied Optics, Volume 45, p. 1515 (2006)
[52] N. Konofaos, E. K. Evangelou, X. Aslanoglou, M. Kokkoris, and R. Vlastou, “Dielectric properties of CVD grown SiON thin films on si for MOS microelectronic devices, ” Semiconductor Science and Technology, Volume 19, p. 50 (2004)
[53] H. Wong, V. A. Gritsenko, “Defects in silicon oxynitride gate dielectric films”, Microelectronics Reliability, Volume 42, p. 597 (2002)
[54] Ligong Zhang, Hua Jin, Weiyou Yang, Zhipeng Xie, Hezhuo Miao, and Linan An, “Optical properties of single-crystalline α-Si3N4 nanobelts”, Appl. Phys. Lett., Volume 86, p. 061908 (2005)
[55] B. H. Augustine, E. A. Irene, Y. J. He, K. J. Price, L. E. McNeil, K. N. Christensen, and D. M. Maher, “Visible light emission from thin films containing Si, O, N, and H”, J. Appl. Phys. Volume 78, p. 4020 (1995)
[56] K. J. Price, L. E. McNeil, A. Suvkanov, E. A. Irene, P. J. MacFarlane, and M. E. Zvanut, “Characterization of the luminescence center in photo- and electroluminescent amorphous silicon oxynitride films”, J. Appl. Phys. Volume 86, p. 2628 (1999)
[57] B. H. Augustine, Y. Z. Hu, E. A. Irene, and L. E. McNeil, “An annealing study of luminescent amorphous silicon‐rich silicon oxynitride thin films”, Appl. Phys. Lett., Volume 67, p. 3694 (1995)
[58] K. J. Price, L. R. Sharpe, L. E. McNeil, and E. A. Irene, “Electrolumi- nescence in silicon oxynitride films”, J. Appl. Phys. Volume 86, p. 2638 (1999)
[59] A. J. Kenyon1, P. F. Trwoga, C. W. Pitt1, and G. Rehm, “The origin of photoluminescence from thin films of silicon‐rich silica”, J. Appl. Phys. Volume 79, p. 9291 (1996)
[60] Jiun‐lin Yeh and Si‐Chen Lee, “Structural and optical properties of amorphous silicon oxynitride”, J. Appl. Phys. Volume 79, p. 656 (1996)
[61] C. Savall, J. C. Bruyere, “Hydrogen and deuterium migration in annealed plasma-deposited silicon nitride films”, Thin Solid Films, Volume 258, p. 1 (1995)
[62] Takashi Noma, Kwang Soo Seol, Hiromitsu Kato, Makoto Fujimaki, and Yoshimichi Ohki, “Origin of photoluminescence around 2.6–2.9 eV in silicon oxynitride”, Appl. Phys. Lett., Volume 79, p. 1995 (2001)
[63] Sandeep Kohli, Jeremy A Theil, Patricia C Dippo, K M Jones, Mowafak M Al-Jassim, Richard K Ahrenkiel, Christopher D Rithner and Peter K Dorhout, “Nanocrystal formation in annealed a-SiO0.17N0.07:H films ”, Nanotechnology, Volume 15, p. 1831 (2004)
[64] Hiromitsu Kato, Akira Masuzawa, Hidefumi Sato, Takashi Noma, Kwang Soo Seol, Makoto Fujimaki, and Yoshimichi Ohki, “Visible electroluminescence in hydrogenated amorphous silicon oxynitride”, J. Appl. Phys. Volume 90, p. 2216 (2001)
[65] Hengping Dong, Kunji Chen, Danqing Wang, Wei Li, Zhongyuan Ma, Jun Xu, Xinfan Huang, “A new luminescent defect state in low temperature grown amorphous SiNxOy thin films, physica status solidi (c), Volume 7, p. 828 (2010)
[66] Leigh Canham, “Gaining light from silicon” , Nature, Volume 408, p. 411 (2000)
[67] 陳良益,「奈米晶體複合薄膜在磨潤與光電性質之研究」,成功大學化學工程研究所博士論文,民國92年
[68] K. J. Price, L. R. Sharpe, L. E. McNeil, and E. A. Irene, “Electrolumine- scence in silicon oxynitride films”, J. Appl. Phys., Volume 86, p. 2638 (1999)
[69] Zingway Pei, Y. R. Chang, and H. L. Hwang, “White electrolumine- scence from hydrogenated amorphous-SiNx thin films”, Appl. Phys. Lett., Volume 80, p. 2839 (2002)
[70] 行政院國家科學委員會,「真空技術與應用」,精密儀器發展中心出版 (2001)
[71] 姚寶順,「反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究」,成功大學材料科學與工程研究所博士論文,民國93年
[72] S. M. Rossnagel, “Handbook of plasma processing”,Noyes Publications, Park Ridge, New Jersy, USA, (1989)
[73] J. R. Hollahan and W. Kern, “Thin Film Process”, Academic Press(1978)
[74] S. K. Habib, A. Rizk, and I. A. Mousa, “Physical parameters Affecting Deposition Rates of Binary Alloys in Magnetron Sputtering System”, Vacuum, Volume 49, p. 153 (1998)
[75] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, (1992)
[76] X. Tan, J. Wojcik, and P. Mascher, “Study of the optical properties of SiOxNy thin films by effective medium theories”, J. Vac. Sci. Technol. A, Volume 22, p. 1115 (2004)
[77] National Institude of Standards and Technology (NIST), Metal Measurement Laboratory(MMT), “http://webbook.nist.gov”
[78] Sudipto Naskar, Scott D. Wolter, Christopher A. Bower, Brian R. Stoner, and Jeffrey T. Glass, “Verification of the O–Si–N complex in plasma- enhanced chemical vapor deposition silicon oxynitride films”, Appl. Phys. Lett., Volume 87, p. 261907 (2005)
[79] 賴宜生,「超薄氮氧化矽作為五氧化二鉭閘極氧化層之中介層特性研究」,成功大學材料科學及工程學系博士論文,民國92年
[80] Y. S. Lai, and J. S. Chen, “Evolution of chemical bonding configuration in ultrathin SiOxNy layers grown by low-temperature plasma nitridation”, J. Vac. Sci. Technol. A, Volume 21, p. 772 (2003)
[81] P. Cova, R. A. Masut, O. Grenier, and S. Poulin, “Effect of unintentionally introduced oxygen on the electron–cyclotron resonance chemical-vapor deposition of SiNX films”, J. Appl. Phys., Volume 92, p. 129 (2002)
[82] P. Cova, S. Poulin, O. Grenier, and R. A. Masut, “A method for the analysis of multiphase bonding structures in amorphous SiOxNy films” J. Appl. Phys.,Volume 97, p. 073518 (2005)
[83] V. Godinho, V.N. Denisov, B.N. Mavrin, N.N. Novikova, E.A. Vinogradov, V.A. Yakovlev,C. Fernandez-Ramos, M.C. Jimenez de Haro, A. Fernandez, “Vibrational spectroscopy characterization of magnetron sputtered silicon oxide and silicon oxynitride films”, Appl. Surf. Sci., Volume 256, p. 156 (2009)

QR CODE