簡易檢索 / 詳目顯示

研究生: 林家豪
Jia-Hao Lin
論文名稱: 以微生物式鈣/矽化機制行砂/黏性土壤之 動-靜態強度改良暨聲-光學檢測之技術研新
Using microbial calcium/silica mechanism for dynamic and static strength improvement of sand / clay and technical development of acoustic-optical detection and analysis
指導教授: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
李冠群
Guan-Chiun Lee
口試委員: 鄧福宸
Fu-Chen Teng
李冠群
Guan-Chiun Lee
陳立憲
Li-Hsien Chen
陳堯中
Yao-Chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 173
中文關鍵詞: 微生物巴氏芽孢桿菌矽藻四乙氧基矽烷超音波脈衝電子顯微鏡
外文關鍵詞: Microbiogical, Sporosarcina pasteurii, Cylindrical fusiformis, tetraethoxysilane, Ultrasonic Pulse, Scanning Electron Microscopy
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣地質多變(潛因)與氣候變遷(誘因)引致國土危脆,不惟大地防災工程刻不容緩,且基建開發之地盤改良與基礎、邊坡穩定等工程需求日殷,本研究有別於習見之地盤改良如物理式地錨及化學式灌漿等工程技術,改用於存在土壤或海洋中之微生物,先以仿生式之微生物誘導碳酸鈣沉澱(MICP)技術,提升粒狀土壤之膠結與降低其滲透;再由自然岩土之矽質膠結優於鈣質之力學行為,創新使用矽藻進行微生物式矽化膠結(MISP)應用於大地工程改良。透過靜態直剪、單壓試驗與動態邊坡振動模型;同時搭配非破壞式-物理性超音波脈衝(UP)、電子顯微鏡(SEM)、化學性能量色散光譜儀(EDS),以驗證其改良成效。
本研究除進行鈣化、矽化改良之外,並將生物式鈣-矽化機制嘗試混合,以期產生新的改良可行性,以相對密度60%之砂土改良72小時後,Bio 1凝聚力可提升 0.71 kgf/cm2、Bio 2可提升0.4 kgf/cm2、Bio Mix可提升0.52 kgf/cm2、Bio Mix(no silaffin)可提升0.44 kgf/cm2;於抗壓強度則可從原先無法自立至Bio 1可提升 0.8 kgf/cm2、Bio 2可提升0.3 kgf/cm2、Bio Mix可提升0.55 kgf/cm2、Bio Mix(no silaffin)可提升0.43 kgf/cm2;而水力傳導係數則可由未改良前8 x 10-3 cm/sec下降至Bio 1的5.8 x 10-3 cm/sec、Bio 2的1 x 10-3 cm/sec、Bio Mix的7 x 10-4 cm/sec、Bio Mix(no silaffin) 的8 x 10-4 cm/sec;於剪力波速中可於72小時後Bio 1提升至596 m/s、Bio 2提升至470 m/s、Bio Mix提升至527 m/s、Bio Mix(no silaffin)提升至497 m/s。並將粒狀土壤成功改良轉移至黏性土壤中,透過電滲工法輔助將生物式改良液導入,以初始含水量80%之高嶺土為例,經馴養72小時後,抗壓強度Bio 1提升至3.84 kgf/cm2、Bio 2提升至2.02 kgf/cm2、Bio Mix提升至3.35 kgf/cm2、Bio Mix(no silaffin)提升至2.33 kgf/cm2;剪力波速部分,Bio 1提升至803 m/s、Bio 2提升至669 m/s、Bio Mix提升至775 m/s、Bio Mix(silaffin)提升至718 m/s。無論是生物式鈣化或矽化,抑或是兩者混合使用,皆可相較於未改良之試體有顯著的提升。


Due to the diversification of Taiwan’s geology (potential cause) and climate change (inducing cause) have caused the soil to be fragile. Not only the earth’s disaster prevention project urgent, but also the demand for infrastructure development, including soil geology improvement and foundation, slope stability and other projects are increasing. This research is different from the conventional ones, which carry out soil geology improvement engineering technologies by physical ground anchors and chemical grouting, are used for microorganisms in the soil or ocean. First, biomimetic microbial induced calcium carbonate precipitation (MICP) technology is used to improve the cementation of granular soil and reduce its penetration ; Second, the mechanical behavior of siliceous cementation of natural rock and soil is better than that of calcium, and the innovative use of diatoms for microbial silicified cementation (MISP) is applied to geotechnical engineering improvement. By proceeding static direct shear test, uniaxial compression test and dynamic slope vibration model, with non-destructive-physical ultrasonic pulse (UP) , electron microscope (SEM) , chemical energy dispersive spectrometer (EDS) to verify the improvement effect at the same time.
Apart from improving calcification and silicification, this study tried to mix the biological calcium-silicification mechanism in order to produce new improvement feasibility. After 72 hours of improvement of sand with a relative density of 60%, Bio 1 cohesion can increase by 0.71 kgf /cm2, Bio 2 can increase 0.4 kgf/cm2, Bio Mix can increase 0.52 kgf/cm2, Bio Mix (no silaffin) can increase 0.44 kgf/cm2 ; the compressive strength can be increased from the original inability to support itself to Bio 1 can increase 0.8 kgf/cm2, Bio 2 can increase 0.3 kgf/cm2, Bio Mix can increase 0.55 kgf/cm2, Bio Mix (no silaffin) can increase 0.43 kgf/cm2 ; and the hydraulic conductivity can be increased from 8 x 10-3 cm/sec before the improvement drops to 5.8 x 10-3 cm/sec for Bio 1, 1 x 10-3 cm/sec for Bio 2, 7 x 10-4 cm/sec for Bio Mix, 8 x 10-4 cm/sec for Bio Mix (no silaffin); in shear wave velocity, Bio 1 can be increased to 596 m/s, Bio 2 to 470 m/s, Bio Mix to 527 m/s, Bio Mix (no silaffin) after 72 hours to 497 m/s. The granular soil was successfully improved and transferred to the cohesive soil, and the biological improvement solution was flow into by the electro-osmosis method. Taking kaolin with an initial water content of 80% as an example, after 72 hours of domesticating, the compressive strength Bio 1 increased to 3.84 kgf/cm2, Bio 2 increased to 2.02 kgf/cm2, Bio Mix increased to 3.35 kgf/cm2, Bio Mix (no silaffin) increased to 2.33 kgf/cm2; and the part of shear wave velocity, Bio 1 increased to 803 m/s, Bio 2 increased to 669 m/s, Bio Mix increased to 775 m/s, and Bio Mix (silaffin) increased to 718 m/s. No matter it is biological calcification or silicification, or hybrid of the two, it can be significantly improved compared to the unimproved specimen.

摘要 i ABSTRACT iii 誌謝 iv 目錄 v 表目錄 x 圖目錄 xii 符號對照表 xvii 中英對照表 xix 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究範圍與方法 2 1.4 研究架構與流程 2 第二章 文獻回顧 6 2.1 微生物於岩土地質之作用 6 2.1.1 微生物成岩成礦機制 8 2.1.2 鈣化微生物之引致碳酸鈣沉澱機制 10 2.1.3 矽化微生物之引致二氧化矽膠結作用 11 2.2 微生物於大地工程應用之技術 13 2.2.1 芽孢桿菌於天然材/人造材之強度改良與修復 14 2.3 生物式改良對於金屬材之影響 21 2.4 電滲工法 22 2.4.1 電滲透原理 23 2.4.2 電滲透壓密理論 24 2.4.3 電滲透化學反應 26 2.5 基本波傳理論 27 2.5.1 體波 28 2.5.2 介質內應力波傳遞 29 第三章 試驗規劃與執行 33 3.1 微生物介紹與培養基選擇 34 3.1.1 鈣化微生物介紹 34 3.1.2 矽化微生物介紹 34 3.2 生物式鈣化工序介紹 35 3.2.1 培養基配製 35 3.2.2 尿素酶活性檢測 38 3.3 生物式矽化工序介紹 42 3.3.1 矽藻培養與蒐集 43 3.3.2 超音波震盪試驗 45 3.3.3 布拉德福蛋白質定量法(Bradford Assay) 46 3.3.4 矽酸濃度檢測 47 3.3.5 破藻液矽酸膠結反應 51 3.4 微生物式鈣矽化工序介紹 52 3.5 微生物式砂土改良驗證 53 3.5.1 砂土物理性質 53 3.5.2 靜態定水頭試驗 54 3.5.3 破壞式靜態直接剪力試驗 57 3.5.4 破壞式靜態單軸抗壓試驗 60 3.5.5 破壞式動態模擬邊坡改良試驗 62 3.6 微生物式黏土改良試驗 64 3.6.1 黏土基本性質 64 3.6.2 電滲工法設備 65 3.6.3 電滲工法改良規劃 71 3.7 非破壞式聲學超音波脈衝試體製備與量測 73 3.8 非破壞式光學電子顯微鏡與元素分析 76 第四章 試驗成果與分析 80 4.1 巴氏芽孢桿菌誘導鈣化沉澱機制 81 4.1.1 尿素標準檢量線範圍校正 82 4.1.2 鈣化微生物尿素酶活性檢測(DMAB) 83 4.1.3 生物式鈣化腐蝕金屬反應結果 85 4.2 矽藻蛋白誘導矽化膠結反應 87 4.2.1 Bradford Assay標準檢量線範圍校正 88 4.2.2 Bradford Assay破藻蛋白濃度定量 89 4.2.3 破藻液矽化膠結反應 91 4.2.4 鉬矽酸鹽比色法標準檢量線範圍校正 93 4.2.5 鉬矽酸鹽比色法矽酸膠結濃度檢測 93 4.3 鈣矽化混合試驗 94 4.4 砂土改良試驗 102 4.4.1 靜態定水頭試驗結果 102 4.4.2 破壞式靜態直接剪力試驗結果 104 4.4.3 破壞式靜態單軸抗壓試驗結果 107 4.4.4 破壞式動態模擬邊坡改良結果 109 4.4.5 非破壞式聲學剪力波速量測結果 112 4.4.6 非破壞式光學微觀分析成果 115 4.5 黏土改良試驗 118 4.5.1 電滲效果分析 118 4.5.2 破壞式靜態單軸抗壓試驗成果 120 4.5.3 非破壞式聲學剪力波速量測結果 122 4.5.4 非破壞式光學微觀分析成果 122 第五章 結論與建議 125 5.1 結論 125 5.2 建議 128 參考文獻 130 附錄A、委員意見回應 135 附錄B、環保署訂定之矽酸濃度檢測法 136 附錄C、尿素濃度檢測工序工項 142 附錄D、蛋白濃度檢測工序工項 143

[1] Arpajirakul S., Likitlersuang S., “Treatment conditionsused inmicrobial induced calcite precipitation for sandy soilimprovement,” 2019.(Oral presentation)
[2] Atlas, R. M. and Bartha, R., “Microbial ecology : Fundamentals and applications,” 1998.
[3] Benini, S., Gessa, C. and Ciurli, S., “Bacillus pasteurii urease: A heter-opolymeric enzyme with a binuclear nickel active site,” 1996.
[4] Carolin, C. L. and Christian., F. W., “Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation,” 2015.
[5] Chiara, Z., Chris, B. “Exploring Bioinorganic Pattern Formation in Diatoms.A Story of Polarized Trafficking.”2001.
[6] Ciurli, S., Marzadori, C., Benini, S., Deiana, S. and Gessa, C., “Urease from the soil bacterium bacillus pasteurii: immobilization on Ca-polygalacturonate,” 1996.
[7] Cord-Ruwisch, R. and Al-Thawadi, S., “Calcium Carbonate Crystals For-mation by Ureolytic Bacteria Isolated from Australian Soil and Sludge,” 2012.
[8] Cord-Ruwisch, R. and Al-Thawadi, S., “Consolidation of Sand Particles by Nanoparticles of Calcite after Concentrating Ureolytic Bacteria In Situ,” 2012.
[9] De Belie, N., Jianyun, W. and De Muynck, W., “微生物与矿物建築材料的相互作用” 2014.
[10] DeJong, J. T., Fritzges, M. B. and Nusslein K., “Microbially induced cementation to control sand response to undrained shear,” 2006.
[11] De Muynck, W., “autogenous setting of non-hydraulic lime mortars by means of microbial carbonate production,” 2010.
[12] De Muynck, W., “from lab scale to in situ applications – The ascent of a biogenic carbonate based surface treatment,” 2014.
[13] Dupraz, C. and Reid, R. P., “Processes of carbonate precipitation in modern microbial mats,” 2009.
[14] Edwards, K. J., Bach, W. and McCollom, T. M., “Geomicrobiology in oceanography : microbe-mineral interactions at and below the seafloor,” 2005.
[15] El-Sekelly, W. and Abdoun, T., “Soil Characterization in Centrifuge Models through Measurement of hear Wave Velocities Using Bender Elements,” 2012.
[16] Engel, G., Vrieling, W., Gieskes, W. C. and P. M. Beelen, “Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle,” 1999.
[17] Follmer, C., “Insight into the role and structure of plant ureases,” 2008.
[18] G. Ganendra, W. De Muynck, A. Ho, and N. Boon, “Methane Oxidizing Bacteria as a sustainable biocatalyst for a concomitant building materials surface protection and greenhouse gas removal,” 2009.
[19] Gan, L. M. and Zhang, K. “Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions,” 1995.
[20] Jawad, F. and Zheng, J. J. , “Improving Poorly Graded Fine Sand with Microbial Induced Calcite Precipitation,” 2016.
[21] Jianyun, W., Domien1, F. and Yusuf, C., “Surface consolidation of natural stones by use of bio-agents and chemical consolidate,” 2017.
[22] Kadhim, F. J., “Improving Poorly Graded Fine Sand with Microbial Induced Calcite Precipitation,” 2016.
[23] Kröger, N., and Bergsdorf, C., “A new calcium binding glycoprotein family constitutes a major diatom cell wall component,” 1994.
[24] Kröger, N., Deutzmann, R. and Sumper, M., “Polycationic Peptides from Diatom Bio silica That Direct Silica Nanosphere Formation,” 1999.
[25] Kröger, N., Deutzmann, R. and Sumper, M., “Silica-precipitating Peptides from Diatoms,” 2001.
[26] Kröger, N. and Bergsdorf, C., “A new calcium binding glycoprotein family constitutes a major diatom cell wall component,” 1994.
[27] Kröger, N., Lehmann, G., Rachel, R. and Sumper, M., “Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall,” 1997.
[28] Kröger, N., Lorenz, S., Brunner, E. and Sumper, M., “Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis,” 2002.
[29] Kroll, R. G., Alkalophiles. In: Edwards,C. (Ed.), Microbiology of Extreme Environments, 1990.
[30] L.A. van Paassen, M.P. Harkes, G.A van Zwieten, “Scale up of BioGrout: a biological ground reinforcement method,” 2009.
[31] Lesley, A. W., Patricia, A. M. and Nagina, P. F., “Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting Calcite Precipitation and for Solid-Phase Capture of Inorganic Contaminants,” 2001.
[32] Liang, C., Donovan, M. and Mohamed, S., “Influence of key environmental conditions on microbially induced cementation for soil stabilization,” 2016.
[33] Mitchell, J. K. and Santamarian, C. J., “Biological considerations in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, 2005, pp. 1222-1233
[34] Moreauxa, S. G., Moreaua, C., Gonzalezb, J. L. and Cossona, R. P., “Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae,” 2007.
[35] Paassen, L., M. P. Harkes, G.A van Zwieten, W. H. van der Zon, W. R. L. van der Star, and M. C. M. van Loosdrecht, “Scale up of BioGrout: a biological ground reinforcement method,” 2009.
[36] Paassen, L. and Harkes, M. P., “Microbial Carbonate Precipitation as a Soil Improvement Technique,” 2007.
[37] Santosh, K., Shula, B. and Oren, T., “Grass silica mineralizer (GSM1) protein precipitates silica in sorghum silica cells,” 2019.
[38] Seshubabu, D., “Decomposition Chemistry of Tetraethoxysilane,” 2005.
[39] Shieh, G. J. and Chien, L. F., “The extrinsic proteins of an oxygen-evolving complex in marine diatom Cylindrotheca fusiformis,” 2011.
[40] Shields, F. D. and Sabatier, J. M., “The effect of moisture on compressional and shear wave speeds in unconsolidated ranular material,” 2000.
[41] Tittelboom, K. V. and Muynck, W. D., “Bacteria protect and heal concrete and stone,” 2009.
[42] Van Slyke, D. D., Archibald, R. M., “Manometric titrimetric,and colorimetric method for measurement of urease activity,” 1944.
[43] Yuze, W., Dejong, J. T., Soga, K. and Kabla, A., “Effects of bacterial density on growth rate and characteristics of microbialinduced CaCO3 precipitates: a particle-scale experimental study,” 2020.
[44] 陸嘉,電滲法運用於地下鑽掘包泥問題之可行性探討,國立台北科技大學土木工程系,碩士論文,2013。
[45] 曾耀霆,微生物誘導鈣/矽化合物之沉澱/膠結效應於動/靜態受剪行為之砂性土壤補強暨其聲-光學響應,國立臺灣科技大學營建工程系,碩士論文,2020。
[46] 莊敬,鋼纖維混凝土內部鋼筋之探測,建國科技大學防災所,碩士論文,2010。
[47] 卓雨璇,微生物式之碳酸鈣膠結效應對粒狀土壤地質改良之研探,國立臺大土木工程學系,碩士論文,2010。
[48] 李金龍,電滲法結合微生物碳酸鈣膠結效應於黏土質地盤改良之研新,國立臺北科技大學土木工程系,碩士論文,2017。
[49] 賴駿瑩,水玻璃製造奈米級二氧化矽膠體方法的探討,私立東海大學化學工程與材料工程研究所,碩士論文,2010。
[50] 黃郡苓,以TEOS界面活性劑製備二氧化矽奈米中空球,逢甲大學化工系研究所,碩士論文,2010。
[51] 石清華,矽藻(Skeletonema costatum)中矽沉積相關蛋白,國立清華大學生命科學系,碩士論文,2003。
[52] 張銘顯,矽藻的培養與特性分析,中臺科技大學食品科技系,碩士論文,2014。
[53] 蕭佩蓉,以Silaffin R5導引Candida rugosa脂解酶的仿生矽化,大同大學生物工程研究所,碩士論文,2014。
[54] 島俊郎、橫山珠美、阿部廣史,尿素加水分解速度に基づく微生物固化技術の沿岸域への適用性評価,2013。

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 2036/08/05 (校外網路)
全文公開日期 2036/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE